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Abstract

This work is dedicated to the study several models of random structures from

the perspective of first-order logic. We prove that the asymptotic probabilities of

first-order statements converge in a general model of random structures with linear

density, extending previous results by Lynch, and give an application of this result

to the random SAT problem. We also inspect the set of limiting probabilities of

first-order properties in sparse binomial graphs, binomial d-uniform hypergraphs

and graphs with given degree sequences. In particular, we characterize the condi-

tions under which this set of asymptotic probabilities is dense in the interval [0, 1].

Finally, we introduce the question of whether preservation theorems, namely  Loś-

Tarski Theorem and Lyndon’s Theorem, hold in a probabilistic sense in various

models of random graphs. We obtain several positive results in different regimes of

the binomial random graph and uniform graphs from addable minor-closed classes.
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CONTENTS 1

Introduction

Random graphs and related structures have been a central object of study in probabilistic

combinatorics since the seminal work of Erdös and Renỳı [20]. Besides being interesting

objects in their own right, research on random graphs also finds important applications

to other areas. For instance, the probabilistic method, introduced by Erdös, is a proof

technique used for showing the existence of combinatorial objects with certain properties.

With this approach, existence is established (non-constructively) by proving that the

set of desired objects has positive probability in some probability space. One of the

earliest famous results proven with this technique was the existence of graphs having

both arbitrarily large girth and chromatic number at the same time. Another area of

application is the study of computationally-hard problems. So called “phase transitions”

have been found for some of those problems, such as k-SAT [25] or k-colorability [1].

These are phenomena where some properties of random structures change drastically

when these structures experience small changes of density. Knowledge related to these

phase transitions has helped to understand the limitations of current algorithms and

inspired the development of new ones [11]. Lastly, random graphs and their evolution

can be used to model a wide range of real-life phenomena, with applications in physics,

computer science, social sciences and biology.

This thesis falls into the scope of the asymptotic study of random structures, mainly

random graphs. The central problem in this context is to compute the limit probability

that Gn satisfies P , given a property P and a well-behaved sequence of random structures

(Gn)n∈N that grow in size. An even more fundamental question is whether this limit exists

at all. It is immediately clear that some regularity conditions should be imposed on P .

For instance, when studying random graphs, one should disallow properties like “there

is an even number of vertices”. Hence, we want to limit ourselves to the study of nice

graph properties, in some sense. A reasonable notion of niceness should, intuitively, be

closed under Boolean operations: the negation of a nice property should also be nice,

and the same goes for the conjunction of two nice properties. The insight of the model-

theoretical approach is to group properties according to formal languages they can be

defined in. This approach was initiated with the seminal result by Fagin and Glebsky

(independently), which states that any first-order property of graphs (i.e., a property
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definable in the first-order logic of graphs) holds in the uniform graph Gn on n vertices

with limiting probability either zero or one [21, 28]. After this, the initial hope was

that on simple, well-behaved random models, the probability of any first-order property

would converge. This intuition was proven wrong in a surprising way by Shelah and

Spencer, who showed in [62] that convergence failed in the binomial random graph for

a wide range of natural decaying edge probabilities. Afterwards, work in this direction

has mainly aimed to establish various convergence and non-convergence results for other

languages and random models.

This thesis presents various contributions to the asymptotic study of random struc-

tures through the lens of logic. As the title indicates, our formal language of choice is first

order logic, and our structures of interest are sparse (as in “opposite to dense”) random

structures. The text is structured as follows. In Chapter 1 we introduce some notation

and preliminary notions about probability and logic that will be used throughout the

rest of the thesis. Each chapter that follows corresponds to various pieces of work com-

pleted by the the author during the course of his PhD studies. In Chapter 2 we introduce

a general binomial model of random sparse structures and show that the probabilities

of first-order properties converge for these structures. In addition to that, we also give

an application of this result to the study of the random SAT problem. In Chapter 3

we study the geometry of the set of limiting probabilities of first-order statements in

several random models. These include the binomial random graph Section 3.1, the bino-

mial k-uniform hypergraph Section 3.2, and random graphs with given degree sequences

Section 3.3. Finally, in Chapter 4, we establish various regularity results for first-order

logic, called preservation theorems, in several models of random graphs. Those include

various regimes of the binomial random graph, as well as in uniform graphs from addable

minor-closed classes.
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Chapter 1

Preliminaries

1.1 General Notation

We adopt the convention that the set N of natural numbers starts at zero. Given n ∈ N,

we write [n] for the set {1, 2, . . . , n}, or the empty set for n = 0. If m ∈ N is another

number, (m)n denotes its n-th falling factorial. That is, m(m−1) · · · (m−n+1) if m ≥ n,

or zero if m < n. Given a set S, (S)n stands for the set of tuples (s1, . . . , sn) ∈ Sn where

no two elements coincide. Similarly,
(
S
n

)
stands for all subsets S′ ⊆ S with |S′| = n.

This way, |Sn| = |S|n, |(S)n| = (|S|)n and
∣∣∣(Sn)∣∣∣ =

(|S|
n

)
. The sets S∗ =

⋃
n∈N S

n and

S∗ =
⋃
n∈N contain all finite tuples with elements in S, with and without repetitions

respectively. We commonly use boldface variables v as shorthands for tuples v1, . . . , vs.

All asymptotics are taken in terms of the parameter n ∈ N. We make use of the

big-O and small-O notations with their usual meanings. Let f(n) be a real function.

Given g(n) be another (asymptotically) positive real function, we write f(n) = O(g(n))

if |f(n)| ≤ Cg(n) holds for some constant C > 0 and all sufficiently large n, and

we use f(n) = Ω(g(n)) to denote g(n) = O(|f(n)|). Alternatively, f(n) = o(g(n))

means that limn→∞ |f(n)|/g(n) = 0. Arithmetic expressions involving O( ), Ω( ) or o( )

occurrences have the usual meaning. For example f(n) = 1 + n + O(n2) means that

f(n)− 1− n = O(n2), and so on.

1.2 Graphs, Hypergraphs and Relational Struc-

tures

Graphs

Formally, a (labeled) graphG is a pair (V (G), E(G)) where V (G) is its set of vertices,

and E(G) ⊆
(
V (G)

2

)
its set of edges. We mostly refer to labeled graphs simply as
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graphs. Unless stated otherwise, we deal only with finite graphs G, meaning that V (G)

is a finite set. This consideration also extends to hypergraphs and relational structures,

introduced later. An object we will refer to multiple times during this thesis is the

binomial random graph G(n, p), introduced by Erdös and Renỳı. This is a random

graph whose set of vertices is [n], and each pair in
(

[n]
2

)
forms an edge with probability

p, independently.

The excess of G is the number ex(G) = |E(G)|−|V (G)|. Given vertices u, v ∈ V (G),

u ∼G v is a shorthand for {u, v} ∈ E(G). Given two graphs G,H, an isomorphism

between them is a bijection f : V (G) → V (H) such that {v, u} ∈ E(G) if and only if

{f(v), f(u)} ∈ E(H) for all u, v ∈ V (H). We write G ' H when G and H are isomor-

phic. An unlabeled graph [G] the isomorphism class of some graph G. Alternatively,

H ⊆ G means that H is a subgraph of G (i.e., V (H) ⊆ V (G) and E(H) ⊆ E(G)). An

H-copy in G is simply a subgraph H ′ ⊆ G satisfying H ' H ′. An automorphism

of G is just an isomorphism from G onto itself. The number of automorphisms of G

is denoted by aut(G). Given a set S ⊆ V (G), G[S] denotes G’s induced subgraph

on S. That is, G[S] is the graph whose set of vertices is S, and whose set of edges is

E(G) ∩
(
S
2

)
.

We consider two notions of rooted graphs, one where roots are ordered, and another

where they are not. A tuple-rooted graph (G,v) is a graph G together with an

ordered tuple of vertices v ∈ V (G)∗ called roots. An isomorphism between tuple-

rooted graphs (G,v), (H,u) where v = (v1, . . . , v`), u = (u1, . . . , u`) is an isomorphism

between the underlying graphs G,V that sends each vi to the corresponding root ui.

Similarly, a set-rooted graph (G,S) is a graph G together with a set S ⊆ V (G), and

an isomorphism between set-rooted graphs (G,R), (H,S) an isomorphism between G

and H that induces an isomorphism between G[R] and H[S]. We usually call tuple-

rooted and set-rooted graphs simply rooted graphs, and the concrete notion should be

clear from context. As usual, a unlabeled rooted (tuple-rooted or set-rooted) graph

is just an isomorphism class of rooted graphs.

Given a vertex v ∈ V (G), degG(d) stands for its degree. The distance between

two vertices v, u is defined as the minimum number of edges required to reach u from

v, or infinity if u and v belong to different connected components, and is denoted by

dG(v, u). Given sets U,U ′ ⊆ V (G), dG(U,U ′) and dG(v, U) are defined in the usual

way. Given r ∈ N, the (closed) disk DG(v, r) ⊆ V (G) is the set of vertices u with

dG(u, v) ≤ r, and the neighbourhood NG(v, r) is the induced subgraph G[DG(v, r)],

rooted at v. We usually drop the subscript G when there is no room for ambiguity.

The disks DG(v, r) and DG(S, r) where v is a tuple of vertices and S is a set of vertices

are defined analogously, and the neighbourhoods NG(v, r), NG(S, r) correspond to the

induced graphs G[DG(v, r)] and G[DG(S, r)] rooted at v and S, respectively.

A rooted tree is a pair (T, ϑ), where T is a tree (i.e., a connected acyclic graph)
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and ϑ ∈ V (T ) is a vertex called its root. The height of (T, ϑ) is the maximum distance

from a vertex u ∈ V (T ) to the root ϑ. Two rooted trees are isomorphic, written

(T, ϑ) ' (T ′, ϑ′), if there is a root-preserving isomorphism between the corresponding

trees. As before, an unlabeled rooted tree is an isomorphism class of rooted trees.

We write T for the set of unlabeled rooted trees, and T(r) for the set of unlabeled rooted

trees with height at most r.

During this thesis we use a notion of rooted forest where roots are ordered. Formally,

a rooted forest (F,ϑ) is a rooted graph, where F is a disjoint union of trees T1, . . . , T`

together with an ordered tuple of roots ϑ = (ϑ1, . . . , ϑ`), one belonging to each tree.

Equivalently, to empathise the ordered nature of a rooted forest, we can also identify

(F,ϑ) with the tuple of rooted trees (Ti, ϑi)i∈[`].

Given ` ≥ 3, C` stands for the `-cycle. A unicycle is a connected graph containing

a single cycle. An r-unicycle is an unicycle where the cycle has at most 2r+ 1 vertices,

and where no vertex lies at distance greater than r from the cycle. We write U and

U(r) for the sets of unlabeled unicycles and unlabeled r-unicycles. A fragment is a

graph whose components are all unicycles. Similarly, given r ∈ N, an r-fragment is

a fragment where each component is a r-unicycle. We write F and F(r) for the sets of

unlabeled fragments and unlabeled r-fragments. The fragment of a graph G, denoted

Frag(G), is the union of unicyclic components in G.

Hypergraphs

Given an integer ` ≥ 2, an `-uniform hypergraph G is a pair (V (G), E(G)), where

V (G) is a (finite) set of vertices and E(G) ⊆
(V (G)

`

)
is a set of (hyper-)edges. Hence,

2-uniform hypergraphs are just graphs. The excess of G is the quantity ex(G) =

(`− 1)|E(G)| − |V (G)|. The hypergraph G is called a cycle if it is connected and each

edge share exactly two vertices with the union of all other edges, and a unicycle if it

is connected and it contains a single cycle. Observe that, unlike the case of graphs,

if ` > 2 there exists a cycle with only two hyper-edges. Equivalently, G is a unicycle

if ex(G) = 0, and is a cycle if, in addition to that, ex(H) 6= 0 for any proper sub-

hypergraph H of G. All other graph notions extend to hypergraphs using their word-

by-word definitions. In the context of k-uniform hypergraphs, Tk(r),Uk(r),Fk(r) stand

for the sets of unlabeled rooted trees with height at most r, of unlabeled r-unicycles,

and of unlabeled r-fragments, respectively.

Relational Structures

With regards to relational structures, we deviate slightly from the commonly-used nomen-

clature and notation. Instead, we adopt graph-like terminology and symbols to maintain
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consistence with other parts of the thesis.

A signature σ = {E1, . . . Es, c1, . . . , ct} is a (finite) collection of relation symbols

E1, . . . Es and constant symbols c1, . . . , ct, where each relation symbol Ei is paired to

a natural number ar(Ei) called its arity. A signature is relational if it only contains

relation symbols. A σ-structure G is a collection containing a set of vertices V (G),

a set of (hyper-)edges Ei(G) ⊆ (V (G))ar(Ei) for each relation symbol Ei ∈ σ, and a

vertex cGi ∈ V (G) for each constant symbol ci ∈ σ. The sets Ei(V ), and the vertices

cGi are said to interpret the symbols Ei and ci, respectively. Given a σ-structure, we

write E(G) for the disjoint union of all relations Ei(G). Unlike the case of graphs and

hypergraphs, edges in a σ-structure G are ordered tuples of vertices, rather than sets of

vertices. A consequence of this is that a single vertex v can appear multiple times in

an edge e ∈ Ei(G). The excess of G is defined as ex(G) =
[∑

Ei
(ar(Ei)− 1)|Ei(G)|

]
−

V (G), where the sum inside the brackets ranges over all relation symbols Ei ∈ σ.

In the context of σ-structures, it is more comfortable to use the excess-based defi-

nitions of many graph notions. A σ-structure G is called a tree if it is connected and

ex(T ) = −1. Alternatively, if G is connected but ex(G) = 0, then G is a unicycle.

Finally, G is a cycle if it is a unicycle and ex(H) < 0 for all its proper substructures

H. Observe that now it is possible to have cycles with just a single edge, which we call

loops. All other graph notions introduced before can also be extended to σ-structures

verbatim. In the setting of σ-structures, we define Tσ(r),Uσ(r),Fσ(r) as the sets of

unlabeled rooted trees with height at most r, of unlabeled r-unicycles, and of unlabeled

r-fragments, respectively.

Graphs and k-uniform hypergraphs can be interpreted as structures where the sig-

nature ϕ consists of a single relation symbol E, which is binary for graphs and k-ary for

k-uniform hypergraphs.

1.3 Logic Background

First-Order Logic

We give a brief introduction to first-order (FO) logic. A more thorough exposition can

be found at [44]. Fix a signature σ. We assume a countably infinite set of variables,

which we usually denote by x, y, z with subscripts and/or superscripts. A term is either

a variable or a constant symbol ci ∈ σ. The set of first-order formulas FO[σ] consists

of all finite strings that result from applying the following rules in succession:

FO1: If t1, t2 are terms, then t1 = t2 is a formula.

FO2: If t1, . . . , tk are terms and Ei ∈ σ is a k-ary relation symbol, then

Ei(t1 . . . tk) is a formula.
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FO3: If ϕ,ψ ∈ FO[σ] are formulas, so are ¬ϕ, ϕ ∨ ψ and ϕ ∧ ψ.

FO4: If ϕ ∈ FO[σ] is a formula and x a variable, then ∃xϕ and ∀xϕ are formulas

as well.

The first-order language of graphs FOg consists of the formulas FO[σg], where the

signature σg consists of a single binary relation symbol E.

We will be liberal in our use of parentheses to make formulas more readable. We

shorten expressions like ∀x1∀x1 . . . ∀xt to ∀x1 . . . xt, and similarly with ∃x1∃x2 . . . ∃xt.
When discussing formulas, we use ≡ as a shorthand for “is written as” (for example, in

expressions like ϕ ≡ ∃xψ). We use the standard shorthands ϕ → ψ and ϕ ↔ ψ, which

stand for ¬ϕ∨ψ and (ϕ→ ψ)∧ (ψ → ϕ). A formula described by the rule FO1 above is

called atomic. Alternatively, ϕ is in prenex normal form if all the quantifiers (that

is, ∀, ∃) occur at the beginning of the formula.

An occurrence of some variable x in a formula ϕ ∈ FO[σ] is called bounded if it lies

within the scope of a quantifier. Otherwise, it is called free. A variable x is said to be

free in ϕ if there is some free occurrence of x in ϕ. We usually write ϕ(x1, . . . , xn) for a

formula ϕ ∈ FO[σ] to denote that free variables in ϕ are among x1, . . . , xn. A sentence

is a formula with no free variables.

Let G be a σ-structure, and ϕ(x) ∈ FO[σ] a formula, where x = x1 . . . xl. We define

the relation G |= ϕ(v), by induction on ϕ’s syntax. Here v ∈ V (G)` is some tuple of

elements in G, and G |= ϕ(v) is read as “A satisfies ϕ(v)”. Given a term t ≡ xi for

some i ∈ [`], its value tG(v) is defined as vi. Otherwise, if t is some constant symbol

ci ∈ σ, the value tG(v) is cGi . The relation G |= ϕ(v) is given by:

• If ϕ ≡ (t1 = t2), then G |= ϕ(v) holds whenever tG1 (v) = tG2 (v)

• If ϕ ≡ Ei(t1, . . . , tar(Ei)) then G |= ϕ(v) holds whenever (tG1 (v), . . . , tGar(Ei)
(v)) ∈

Ei(G).

• G |= ¬ϕ(v) iff G |= ϕ(v) does not hold.

• G |= ϕ(v) ∧ ψ(v) iff both G |= ϕ(v) and G |= ψ(v).

• G |= ϕ(v) ∨ ψ(v) iff either G |= ϕ(v) or G |= ψ(v).

• If ϕ ≡ ∃x`+1ψ(x, x`+1), then G |= ϕ(v) iff G |= ψ(v, v`+1) for some v`+1 ∈ V (G).

• If ϕ ≡ ∀x`+1ψ(x, x`+1), then G |= ϕ(v) iff G |= ψ(v, v`+1) for all v`+1 ∈ V (G).

Ehrenfeucht-Fäıssé (EF) Games

Two σ-structures G0, G1 are said to be k-equivalent for some k ∈ N, written G0 ≡k G1

if both satisfy the same sentences ϕ ∈ FO[σ] with qr(ϕ) ≤ k. A remarkable fact is

that the number of ≡k-classes is finite for any σ [44]. In principle, it seems like proving

k-equivalence between two structures would involve determining which sentences with
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quantifier rank k hold in each of them. However, it turns out that this relation admits

a much nicer characterization in terms of pebble games.

Definition 1.1. Let v0 = (v0
1, . . . , v

0
k) and v1 = (v1

1, . . . , v
1
k) be tuples of vertices lying

in σ-structures G0, G1. We say that (v0,v1) defines a partial isomorphism between

G0 and G1 if the following conditions hold:

• v0
i = v0

j iff v1
i = v1

j for all i, j ∈ [k].

• v0
i = cG0 iff v1

i = cG1 for all i ∈ [k] and all constants c ∈ σ.

• (v0
i1
, . . . , v0

iar(E)
) ∈ E(G0) iff (v1

i1
, . . . , v1

iar(E)
) ∈ E(G1) for all relations E ∈ σ and

all i0, . . . , iar(E) ∈ [k].

The k round Ehrenfeucht-Fäıssé (EF) game on the σ-structures G0, G1, denoted

as EFk(G0, G1) is defined as follows. The game is held between two players, Duplicator,

who tries to establish k-equivalence between G0 and G1, and Spoiler, who attempts to

refute it. The number of rounds k is known from the begging to both players. In the

i-th round, Spoiler picks a vertex vji ∈ V (Gj) in either structure j = 0, 1, and Duplicator

responds by choosing another vertex v1−j
i ∈ V (G1−j) in the other structure. This way,

at the end of the game vertices v0
1, . . . , v

0
k have been chosen in G0, and v1

1, . . . , v
1
k in

G1. Let c1, . . . c` be all constants in σ. The game is won by Duplicator if the tuples

(cGi1 , . . . cGi` , v
i
1, . . . v

i
k) with i = 0, 1 define a partial isomorphism between G0 and G1.

Otherwise Spoiler wins.

This is a complete information game where either Spoiler or Duplicator has a winning

strategy. Moreover, the following holds [44][Theorem 3.9]:

Theorem 1.1 (Ehrenfeucht-Fäıssé). Given two σ-structures G0, G1, Duplicator has a

winning strategy in EFk(G0, G1) for some k ∈ N if and only if G0 ≡k G1.

1.4 Probability Background

We assume familiarity with the basics from probability theory. Given an event A, we

write Pr(A) for its probability. We say that a sequence of events An holds with high

probability (w.h.p.) or asymptotically almost surely (a.a.s.) if Pr(An) = 1− o(1).

Random variables are assumed to be either integer or real-valued unless stated otherwise.

The mean or expected value of a random variable X is written E [X], while Var (X)

stands for its variance. Given i ∈ N, the i-th moment of X is the quantity E[Xi],

whereas the i-th factorial moment of X is E [(X)i]. Given a distribution D over some

measurable space, we may also use D to denote a random variable with distribution

D. Otherwise, we may explicitly write X ∼ D to denote that D is the distribution

of some random variable X. We write Bin(n, p) for the binomial distribution with
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number of trials n ∈ N and success probability p ∈ [0, 1]. That is, Pr(Bin(n, p) = i) =(
n
i

)
pi(1−p)n−i for all 0 ≤ i ≤ n. Similarly, Poisλ denotes the Poisson distribution with

mean λ ∈ (0,∞). I.e., the one given by Pr(Poisλ = i) = e−λ λ
i

i! for all i ∈ N. Given two

distributions D1, D2 over measurable spaces S1, S2, the product distribution D1×D2

is the one satisfying Pr(D1×D2 ∈ A1×A2) = Pr(D1 ∈ A1) Pr(D2 ∈ A2), where A1 ⊆ S1

and A2 ⊆ S2 are measurable sets.

Below we introduce the two basic tools of the probabilistic method, named after the

first and the second moment of a random variable.

Theorem 1.2 (Markov’s Inequality). Let X be a non-negative random variable with

finite expected value. Then Pr(X ≥ a) ≤ E [X] /a for all a > 0.

Corollary 1.1 (First Moment Method). Let X(n) be sequence of non-negative random

variables. If E [X(n)] = o(1) then X(n) = 0 w.h.p.

Theorem 1.3 (Chebyshev’s Inequality). Let X be a random variable with finite vari-

ance. Then Pr(|X − E [X] | ≥ a) ≤ Var (X) /a2 for all a > 0.

Corollary 1.2 (Second Moment Method). Let X(n) be a sequence of random variables

with finite variance. Suppose that (1) E [X(n)] diverges to infinity and (2) Var (X(n)) =

o(E [X(n)]2), or equivalently, E
[
X(n)2

]
∼ E [X(n)]2. Then a.a.s. X(n)/E [X(n)] ∈

[1− ε, 1 + ε] for all ε > 0. In particular, a.a.s. X(n) > 0.

Given a sequence of random variables X(n), and another variable X, we say that

X(n) converges in distribution to X, written X(n)
d−→ X, if Pr(X(n) ≤ x) =

Pr(X ≤ x) + o(1) for all x that are continuity points of F (x) = Pr(X = x). When X is

integer-valued, this is equivalent to Pr(X(n) = x) = Pr(X = x) + o(1) for all integers x.

Whereas the results above help us estimating the size of a random variable X(n), the

following one is useful for determining its asymptotic distribution under some precise

conditions [10, Theorem 1.23].

Theorem 1.4 (Method of Moments). Let k ∈ N. For each n ∈ N, let X1(n), . . . , Xk(n)

be random variables over the same measurable space. Suppose that there are real positive

constants λ1, . . . , λk such that for all a1, . . . , ak ∈ N

lim
n→∞

E

[
k∏
i=1

(
Xi(n)

ai

)]
=

k∏
i=1

λaii
ai!

.

Then (X1(n), . . . , Xk(n))
d−→ Poisλ1 × · · · × Poisλk .

In other situations we are able to determine the asymptotic distribution of a sequence

X(n) by giving another sequence of random variables Y (n) with known “limit”, and
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showing that X(n) and Y (n) are similar. The total variation distance between two

variables X,Y taking values on the same measurable space is defined as

dTV (X,Y ) = sup
A
|Pr(X ∈ A)− Pr(Y ∈ A)| ,

where A ranges over all measurable sets. Below are some easy to derive relations between

total variation distances and convergence in distribution.

Lemma 1.1. Let X(n), X ′(n) be sequences of random variables. The following state-

ments hold.

(1) If dTV (X(n), X) = o(1) for some variable X, then X(n)
d−→ X.

(2) If X ′(n)
d−→ X for some variable X and dTV (X(n), X ′(n)) = o(1), then X(n)

d−→ X.

A useful method to bound the total variation distance between two variables is

through couplings. A coupling between two random variables X,Y is another vector-

valued random variable (X ′, Y ′) where the marginal distributions of X ′ and Y ′ coincide

with those of X and Y .

Lemma 1.2 (Coupling Lemma). Given two random variables X,Y , and a coupling (X ′,

Y ′) between them, Pr(X ′ 6= Y ′) ≥ dTV (X,Y ).

We will use couplings mostly for determining the distribution of small neighbour-

hoods in various random models of graphs or relational structures. Our models of inter-

est are sparse, meaning that generally small neighbourhoods “look like” random forests.

This can be made precise via the notion of local convergence [68] (which we mention,

but will not cover thoroughly in this thesis). The random forests that approximate the

neighborhoods are given by so-called branching processes, which we introduce below.

Definition 1.2. Let r ∈ N be fixed and X̃ ,X be distributions over N. Let (Xi)i∈N

be mutually independent random variables, where Xi has distribution X̃ for 1 ≤ i ≤ r

and distribution X for i > r. A r-root branching process with root offspring

distribution X̃ and general offspring distribution X is a sequence of random

variables BP = (Yi)
∞
i=0 satisfying the following recursive relation:

Y0 = r, Yn =

Yn−1 +Xn − 1, if Yn−1 > 0

0 otherwise.

The variables Xi are referred to as offspring variables.

A branching process defined this way can be interpreted as the exploration of a

random rooted forest F formed by r rooted trees T1, . . . Tr where (1) the number of

children attached to each vertex are mutually independent variables, (2) the number of
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children attached to the i-th root has distribution X̂i, and (3) the number of children

attached to each non-root vertex has distribution X . In the exploration, we expose

F ’s vertices in breadth-first order until the whole forest has been exposed. During this

procedure, an exposed vertex is called dead if its children have been exposed as well,

and is called active otherwise. We begin by exposing all F ’s roots. At each step, until

no active vertices are left, we pick a remaining active vertex in depth-first order and

expose its children. This way, the variable Yn counts the active vertices at the end of

the n-th round, and Xn counts the newly-revealed vertices.

We make this interpretation of branching processes as random rooted forests explicit

in the following definition.

Definition 1.3. A Ulam-Harris forest with r ∈ N roots is a labeled rooted forest

F = (Ti, ϑi)i∈[r] where vertices in V (Ti) are words ω ∈ N∗ satisfying:

– The root ϑi is the singleton i.

– The children of a vertex ω ∈ V (Ti), are ω1, ω2, . . . , ωdω, where dω denotes ω’s

number of children.

Additionally, we consider the lexicographical order over vertices in V (F ) =
⋃
i V (Ti).

The Ulam-Harris forest FBP given by a branching process BP with offspring variables

Xi is constructed inductively by setting dω = Xi, where ω is the i-th vertex of FBP . We

identify branching processes BP with their corresponding Ulam-Harris forests FBP .

A well understood feature of branching processes is that, depending on their offspring

distributions, they may yield “infinite” forests with non-zero probability. However, as

stated in the next lemma, it is a well-known fact that a branching process yields a well-

defined distribution over finite forests as long as its general offspring distribution has

mean smaller than one.

Lemma 1.3. Let r ∈ N and let BP be a r-root branching process, and let Tr be the

set of unlabeled finite rooted forests with r roots. Suppose that BP’s general offspring

distribution X satisfies that E [X] < 1. Then
∑

F∈Tr Pr(BP ' F ) = 1.

A common issue that arises when dealing with asymptotic quantities is that of ex-

changing limit and sum operators. The next definition characterizes the situations where

this exchange is possible.

Definition 1.4. Let (fn)n∈N be a sequence of functions fn : S → [0,∞) where S is

a countable set. The sequence (fn)n∈N is tight if for every ε > 0 there exists a finite

T ⊂ S satisfying
∑

s 6∈T fn(s) < ε for all n.

Lemma 1.4. Let (fn)n∈N be a sequence of functions fn : S → [0,∞) where S is a

countable set. Suppose that for each s ∈ S, f(s) = limn→∞ fn(s) exists and is finite.
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Additionally, suppose that
∑

s∈S f(s) is finite. Then limn→∞
∑

s∈S fn(s) =
∑

s∈S f(s)

if and only if (fn)n∈N is tight.
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Chapter 2

Convergence Law for Sparse

Random Structures

The results presented during this chapter were partially obtained during the author’s

master thesis and later published in [41]. The presentation of this chapter differs from

[41] in that we are able to significantly simplify some proofs using different probabilistic

techniques. This is further discussed at Section 2.2.

Given a formal language L, and a sequence of random structures (Gn)n∈N growing

in size, we say that (Gn)n∈N satisfies a convergence law with respect to L (or just

a L-convergence law) if limn→∞ Pr(Gn satisfies P ) exists for all properties P that are

expressible in L. Furthermore, if the only possible values for this limit are 0 and 1, we

say that a zero-one law with respect to L holds. Convergence laws have been widely

studied in the context of FOg logic and the binomial random graph G(n, p). Here, the

seminal result by Fagin [21] and Glebsky [28], independently, states that for any fixed

p ∈ [0, 1], a zero-one law with respect to FOg holds in G(n, p).

A more complex situation arises when one allows p = p(n) to be a decreasing function

of n. In this setting, a FOg-convergence law holds when p(n) = o(n−1+ε) for all ε > 0,

under few additional regularity conditions [50, 63, 45]. Moreover, the probabilities p(n)

in this range for which a zero-one law holds are known [45]. In contrast, the dense

regime (i.e., p(n) = Ω(n−1+ε) for some ε > 0) is much harder to analyze. Here, even

for seemingly tame probabilities, like p(n) = n−α with α a rational number in (0, 1),

the convergence law fails. However, if p(n) = n−α, where α ∈ (0, 1) is irrational, then

a zero-one law holds [62]. Apart from this, in the dense range there are fundamental

obstacles to characterizing the p(n) for which a zero-one law holds: when α ∈ (0, 1) is

a rational number, there are sequences p(n) of the form n−α+o(1) achieving a zero-one

law, but those p(n) are non-computable [45].

Other work on the subject studies the logical properties of other random graph
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models, like graphs with given degree sequences [46, 47, 30], uniform graphs from minor-

closed classes [31, 39], or geometric graphs [52, 29]. Another direction is to consider

different languages other than FOg. Most work in this regard studies fragments of

second-order logic, like monadic second-order logic [35], existential monadic second-order

logic [34, 43], and other quantifier classes [36, 37, 38]. For the most part, results about

limit laws are stated either for uniform relational structures or for various models of

random graphs. Other kinds of combinatorial objects have also been studied in a more

limited fashion, including random words [48], unary functions [49], or permutations [23].

The main goal of this chapter is to establish a FO-convergence law in the sparse range

of a general model random structures. This result generalizes the FOg-convergence law

for G(n, p) when p(n) ∼ c/n, obtained by Lynch in [50], as well as an unpublished result

[59] that extends Lynch’s result to uniform hypergraphs.

Throughout this chapter σ = {E1, . . . , E|σ|} denotes some fixed relational signature,

where ai = ar(Ei) for i = 1, . . . , s, and all relations have arity at least two (i.e., ai ≥ 2

for all i). We refer to σ-structures simply as structures.

Let p = p(n) = (p1(n), . . . , p|σ|(n)) be a tuple of probabilities which depend on

the parameter n. The binomial random structure Gσ(n,p) has vertex set [n], and

for all 1 ≤ i ≤ |σ|, each tuple e ∈ ([n])ai satisfies the predicate Ei with probability pi

independently. We are interested in dealing with sparse structures. More concretely, we

want to study the case where the relations E1, . . . , E|σ| grow linearly with the number of

vertices. From now on, we assume that p is a tuple of decaying probabilities satisfying

pi ∼ ci/nar(Ei)−1 for some constants c = (c1, · · · c|σ|) ∈ (0,∞)|σ|.

Our main result, Theorem 2.1, states that in this situation Gσ(n,p) satisfies a FO[σ]-

convergence law. Similarly to Lynch’s result in [50], we also study the limit probability

of each sentence ϕ ∈ FO[σ] as a function of c1, . . . , c|σ|, and give a family of well-behaved

expressions to which those limits belong. We define this family below.

Definition 2.1. The set Expr consists of all expressions with parameters c1, . . . , c|σ|

formed by a finite application of the following rules:

1. For all 1 ≤ i ≤ |σ|, ci ∈ Expr.

2. If λ ∈ (0,∞), ω ∈ Expr, then λω ∈ Expr.

3. If ω ∈ Expr, n ∈ N, then Pr(Pois(ω) = n) and Pr(Pois(ω) ≥ n) belong to Expr.

4. If ω1, ω2 ∈ Expr, then ω1ω2, ω1/ω2, ω1 + ω2 all belong to Expr.

Now we are in conditions of stating the main theorem of this chapter.

Theorem 2.1. Let p = (p1, . . . , p|σ|) be a tuple of probabilities satisfying pi(n) ∼
ci/n

arEi−1 for some real positive constants c = (c1, . . . , c|σ|). Consider a FO[σ]-sentence

ϕ. Then the limit

pϕ(c) = lim
n→∞

Pr(Gσ(n,p) |= φ)
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exists and depends only on ϕ and c. Moreover, for any fixed φ, pφ(c) is a finite (possibly

empty) sum of expressions belonging to Expr.

Below we sketch the proof of this result. Afterwards we give an outline of the

chapter’s structure.

Sketch of the Proof

The general strategy to show a FO convergence law for some sequence of structures

(Gn)n∈N is the following. Given a quantifier rank k, one finds classes C1, . . . , C` satisfying

(I) G0 ≡k G1 for all G0, G1 in the same class Ci, (II) Pr(Gn ∈ Ci) converges for all i,

and (III) w.h.p. Gn belongs to any of C1, . . . , C`. From those three facts follows that

Pr(G |= ϕ) converges for all sentences ϕ with qr(ϕ) ≤ k. Indeed, by (III)

Pr(G |= ϕ) =
∑̀
i=0

Pr(Gn |= ϕ | Gn ∈ Ci) Pr(Gn ∈ Ci) + o(1).

By (I), Pr(Gn |= ϕ | Gn ∈ Ci) is either zero or one for each i, and by (II) each factor

Pr(Gn ∈ Ci) converges, so the statement follows.

We sketch how use this proof idea to show Theorem 2.1. We follow similar ideas to

those used in [50] for establishing the FOg-convergence law in G(n, p) when p(n) ∼ c/n.

Let p = (p1, . . . , p|σ|) be as in Theorem 2.1. First, we obtain a local description of

Gσ(n,p). The r-core of the structure Gσ(n,p), denoted Coren|r, is the r-neighbourhood

of all its cycles of length at most 2r + 1. Observe that Coren|r is not necessarily a

fragment: it may have complex components if there are short cycles at a small distance

from each other. However, w.h.p. this is not the case. Fix r ∈ N. The following hold:

(1) For each r ∈ N there is a random tree T |r such that, the r-neighborhoods of `

uniformly chosen vertices v1, . . . , v` ∈ [n] in Gσ(n,p) converge in distribution to

(T |r)` (i.e., ` disjoint independent copies of T |r).
(2) For each r ∈ N, there is a distribution Γ|r over fragments (recall the definition of

fragment in Section 1.2) such that Coren|r
d−→ Γ|r.

Fact (1) can be obtained similarly to well-known local-convergence results in G(n, p)

[68], and (2) is a corollary of (1) and a characterization of the small-cycle distribution of

Gσ(n,p). Given a quantifier rank k ∈ N, we define equivalence relations ≡Ly
k over rooted

trees and over fragments that refine logical equivalence ≡k. Roughly, using facts (1)

and (2) above, one can show that w.h.p. Gσ(n,p) is r-simple, meaning that its short

cycles are far away (and Coren|r is a fragment), and (k, r)-rich, meaning that, for any

≡Ly
k -class C of trees, there are as many neighbourhoods “as needed” that belong to C.

Let r = (3k − 1)/2. An application of EF games shows that the ≡k-class of a r-simple,

(k, r)-rich structure G depends only on the ≡Ly
k -class of its r-core. Finally, we show
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that the probability that Pr(Coren|r ∈ Ci) converges to some expression in Expr for any

≡Ly
k -class of fragments Ci. Putting all of those arguments together we get that, for any

sentence ϕ ∈ FO[σ],

Pr(Gσ(n,p) |= ϕ) =
∑̀
i=1

Pr(Gσ(n,p) |= ϕ | Coren|r ∈ Ci) Pr(Coren|r ∈ Ci) + o(1),

where C1, . . . , C` is an enumeration of ≡Ly
k -classes of fragments. From here the result

follows easily using the ideas introduced above.

Outline of the Chapter

In Section 2.1 we introduce inside-out strategies for the sparse regime of Gσ(n,p). This

constitutes the model-theoretic part of Theorem 2.1’s proof. In Section 2.2 we determine

the asymptotic distribution of a typical r-neighbourhood in Gσ(n,p), and the asymptotic

distribution of its r-core. After this, Section 2.3 is dedicated to prove our main result

Theorem 2.1. Following that proof, Section 2.4 extends this convergence law to richer

models of random structures where the underlying theory consists of various symmetry

and anti-reflexivity axioms. Finally section 2.5 showcases an application of the chapter’s

results to the study of unsatisfiability certificates in random SAT instances.

2.1 Inside-Outside Strategies

In this section we give a generalization of the so-called inside-out strategies presented in

[64]. Those strategies play a central role in the proof of our FO-convergence law.

A common occurrence in random graphs is that fixed-radius neighborhoods can be

divided into abundant, which asymptotically occur an unbounded number of times, and

rare, which may appear in finite quantities. In the sparse regime of Gσ(n,p), abundant

neighborhoods correspond to trees, while rare ones correspond to unicycles. Roughly,

our first result in this section, Theorem 2.2, states that two structures with the same

abundant 3k-neighborhoods are FO k-equivalent if both structures have essentially the

same number of rare 3k-neighborhoods in each FO k-type. “Essentially” here means

that the quantities may be different so long as both exceed k. Afterwards, the following

subsections develop several notions of equivalence between trees, unicycles and frag-

ments. Those, together with Theorem 2.2 are used to show some sufficient conditions

for k-equivalence between structures where all small neighbourhoods are either trees or

unicycles (Theorem 2.3).

Let G0, G1 be arbitrary structures, and let S0 ⊆ V (G0), S1 ⊆ V (G1) be sets of roots.

The distance-preserving EF game, dEF((G0, S0), (G1, S1); k) is defined the same
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way as EF(G0, G1; k), with the following additional winning conditions for Duplicator.

Write v0
1, . . . v

0
`+k, v

1
0, . . . , v

1
`+k for the constant-interpretations in G0, G1 followed by

the vertices chosen during the game. Then Duplicator wins if, in addition to the partial

isomorphism condition described in Definition 1.1, d(v0
i , S0) = d(v1

i , S1) for all i ∈ [`+k],

and d(v0
i , v

0
j ) = d(v1

i , v
1
j ) for all i, j ∈ [` + k]. The expression (G0, S0) ≡dFO

k (G1, S1)

means that Duplicator has a winning strategy in this game.

Given a structure G, and a set U ⊆ V (G), we define the r-independence number

of U as the maximum size |W | where W ⊆ U satisfies d(u, v) > 2r + 1 for all u, v ∈W .

Theorem 2.2. Let (G0, S0), (G1, S1) be arbitrary rooted τ -structures, k ∈ N, r = 3k−1
2 .

Suppose that S0 and S1 contain all constant-interpretations in G0 and G1 respectively.

Then G0 ≡FO
k G1 if the following hold:

(1) N(S0, r) ≡dFO
k N(S1, r).

(2) Given t ≤ r, let Fi(t) ⊆ V (Gi) be the set of vertices v with d(v, Si) > 2t+ 1. Then

for all vertices z ∈ F0(t) ∪ F1(t), and all i = 0, 1 the set

Ki(z, t) =
{
v ∈ Fi(t) | N(z, t) ≡dFO

k N(v, t)
}

has t-independence number at least k.

We give some intuition about the statement above. The sets of roots Ui should

be thought of as the “special” vertices in Gi whose r-neighborhoods are rare. Say, for

instance, the vertices forming cycles in G(n, c/n). Condition (1) guarantees the rare

neighborhoods in G0, G1 are equivalent. Condition (2) states that, for any vertex x

lying far away from the special ones, there are plenty of other vertices in G0, G1 whose

neighborhoods are equivalent to that of x.

Proof of Theorem 2.2. We proceed by induction, starting from the base case, with k = 0,

r(k) = 0. Let c1, . . . , c` be the constant symbols in τ , and let cij be the interpretation of

cj on Gi for i = 0, 1. We need to show that the substructures induced on c01, . . . , c
0
` and

c11, . . . , c
1
` are isomorphic. This follows from condition (1), together with the fact that

S0, S1 contain all the constant-interpretations.

Now, assume that the statement holds for k − 1. We need to prove it for k as well.

Consider the game EF(G0, G1; k). Without loss of generality we can assume Spoiler

makes their first move x0 in G0. Let r′ = 3k−1−1
2 . Observe that r = 3r′ + 1. There are

two cases to cover:

(I) d(x0, S0) > 2r′+ 1. In this case, by (2) and k ≥ 1, Duplicator can choose a vertex

x1 ∈ V (G1) satisfying both d(x1, S1) > 2r′ + 1 and N(x0, r′) ≡dFO
k N(x1, r′).

(II) d(x0, S0) ≤ 2r′ + 1. Using (1) Duplicator can choose x1 ∈ N(S1, r) following a

winning strategy in dEF(N(S0, r), N(S1, r); k).
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Let c be a fresh constant symbol and let σ′ = σ ∪ {c}. For each i = 0, 1, we define

G′i as the σ′-structure obtained from Gi by setting cGi = xi. Additionally, we define

S′i = Si ∪ {xi} for i = 0, 1. We apply the induction hypothesis to (G′0, S
′
0), (G′1, S

′
1).

We prove that G′0 ≡FO
k−1 G′1 by showing that (G′0, S

′
0), (G′1, S

′
1) satisfy the theorem’s

statement for k− 1. Observe that this completes the proof. We need to show that both

(1) and (2) hold:

Let us begin with (1). That is,

N(S′0, r
′) ≡dFO

k−1 N(S′1, r
′). (2.1)

If x0, x1 were picked according to case (I) above, then N(S′i, r
′) is the disjoint union of

N(Si, r
′) and N(xi, r′). Additionally, N(S0, r

′) ≡dFO
k−1 N(S1, r

′) as well as N(x0, r′) ≡dFO
k−1

N(x1, r′), so Equation (2.1) follows. Alternatively if x0, x1 were picked according to (II),

then using that r = 3r′ + 1 we get N(S′i, r
′) ⊆ N(Si, r). In this case Equation (2.1) can

be deduced by observing that

• Duplicator wins the game dEF(N(S0, r), N(S1, r); k),

• x0, x1 were picked according to a winning strategy of Duplicator, and

• S′i = Si ∪ {xi}.

We show property (2) now. Let t ≤ r′, and F ′i (t) ⊆ V (G′i) be the set of

vertices satisfying d(v, S′i) > 2t + 1, as defined in (2). Fix an arbitrary vertex z ∈
F ′0(t)∪F ′1(t). We need to show that for i = 0, 1, the r′-independence number of K ′i(z, t) ={
v ∈ F ′i (t) | N(z, t) ≡dFO

k N(v, t)
}

is at least k−1. Observe that F ′i (t) = Fi(t)\N(xi, t),

so z ∈ F0(t)∪F1(t). Thus, by hypothesis the t-independence number of Ki(z, t) is at least

k. Observe again that K ′i(z, t) ⊇ Ki(z, t) \N(xi, t). This shows that the t-independence

number of K ′i(z, t) is at least k − 1, as we wanted.

2.1.1 Strategies on Trees

In this section we give a winning strategy for Duplicator in dEF games played on rooted

trees. The goal is not to give the most general strategy, but rather to show one that

is relatively simple to define but still partitions rooted trees of fixed height into a finite

number of classes.

Let (T, x) be a rooted tree. The source of an edge e ∈ E(T ) is the only vertex in

e satisfying d(x, v) = d(x, e). Given a vertex v ∈ V (T ), we define T (v;x) as the tree

induced by T on the vertices:

{u ∈ V (T ) | d(u, x) = d(u, v) + d(v, x)},
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and rooted at v. Intuitively, T (v;x) corresponds to the sub-tree that “grows out” of v.

A branch is a rooted tree where the root belongs to only one edge. Given an edge e in

a rooted tree (T, x), we define T (e;x) as the tree induced by T on

{v ∈ V (T ) | d(v, x) = d(v, e) + d(e, x) + 1} ∪ {v ∈ e},

and rooted at the source of e. Observe that T (e;x) is a branch.

Definition 2.2 (Equivalence of trees). Let k ≥ 0. We define the equivalence relation

≡Ly
k over rooted trees of height r inductively as follows. For r = 0, rooted trees consist

simply of their roots, and we put (T0, x
0) ≡Ly

k (T1, x
1) if x0 and x1 represent the same

constants. Now assume ≡Ly
k has been defined for heights up to r − 1. First we define

the relation over branches of height r, and afterwards over general rooted trees. Let

(T0, x
0), (T1, x

1) be branches of height r, and let e0, e1 be the unique edges containing

x0 and x1 respectively. We put (T0, x
0) ≡Ly

k (T1, x
1) if (1) x0 and x1 represent the same

constants, (2) e0 and e1 are of part of the same relation, and (3) if ei = (vi1, . . . v
i
`)

for i = 0, 1, then for all j ∈ [`] either v0
j = x0 and v1

j = x1 at the same time, or

T0(v0
j ;x

0) ≡Ly
k T1(v1

j ;x
1). Finally, consider the case where (T0, x

0), (T1, x
1) are arbitrary

trees of height r. Let C be the set of ≡Ly
k -classes of branches with height at most r. We

write (T0, x
0) ≡Ly

k (T1, x
1) if (1) x0 and x1 represent the same constants, and (2) for all

classes C ∈ C the quantity

∣∣{e ∈ E(Ti) | xi ∈ e, Ti(e;xi) ∈ C
}∣∣

is the same for i = 0 and i = 1, or is at least k in both cases.

Lemma 2.1. Let (T0, x
0), (T1, x

1) be rooted trees satisfying (T0, x
0) ≡Ly

k (T1, x
1). Then

(T0, x
0) ≡dFO

k (T1, x
1).

Proof. Note that ≡Ly
k imply that T0, T1 have the same height r. The proof is by induction

on r. We begin with the case r = 0. Here T0, T1 consist simply of x0, x1, respectively. As

(T0, x
0) ≡Ly

k (T1, x
1), both roots represent the same constants and the statement holds.

Now we assume the statement is true up to r − 1 and prove it for r. First we

consider the case where (T0, x
0), (T1, x

1) are branches. Let e0, e1 be the unique edges

containing x0, x1 respectively, where ei = (vi1, . . . , v
i
`). A winning strategy for Duplica-

tor in dEF((T0, x
0), (T1, x

1); k) is as follows. Whenever Spoiler chooses xi, Duplicator

responds with x1−i. Otherwise, Spoiler chooses inside T ′i = Ti(v
i
j ;x

i) for some vij 6= xi.

Let T ′1−i = T1−i(v
1−i
j , x1−i). Observe that from the definition of (T0, x

0) ≡Ly
k (T1, x

1)

follows that (T ′0, v
0
j ) ≡

Ly
k (T ′1, v

1
j ). As T ′0, T ′1 have height at most r − 1, by induction

Duplicator has a winning strategy in dEF((T ′0, v
0
j ), (T

′
1, v

1
j ); k). This way, Duplicator can

play according to this strategy whenever Spoiler chooses inside T ′i , taking previous plays
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into account if necessary. Verifying this yields a winning strategy for Duplicator on

the original trees (T0, x
0), (T1, x

1) is straightforward. Finally, we prove the theorem for

general trees (T0, x
0), (T1, x

1) of height r assuming it holds true for r− 1. We describe a

winning strategy for Duplicator in dEF((T0, x
0), (T1, x

1); k), as before. For this strategy,

Duplicator maintains a partial matching of edges e0 ∈ E(T0) containing the root x0,

and edges e1 ∈ E(T1) containing the root x1. This matching satisfies the property that

T0(e0; v0) ≡Ly
k T1(e1; v1) for all pairs e0, e1. Observe that these branches have height

at most r, so Duplicator wins the k-round dEF game played on them, as shown above.

Whenever Spoiler picks a root xi, Duplicator answers with the other x1−i. Otherwise,

Spoiler chooses a vertex inside some branch Ti(e
i;xi), where ei contains xi. If ei has al-

ready been paired with another edge e1−i ∈ E(T1−i), then Duplicator can play according

to a winning strategy between T0(e0; v0) and T1(e1; v1), taking previous plays on these

branches into account. If ei has not been paired so far, then there is another unpaired

edge e1−i ∈ E(T1−i), containing the root x1−i and satisfying T0(e0;x0) ≡Ly
k T1(e1;x1).

This follows from the definition of ≡Ly
k on rooted trees and the fact that at most a new

pairing is formed during each round, so at most k−1 pairings exist at this point. There-

fore, Duplicator can add the pair e0, e1 to the matching and play following a winning

strategy on dEF(T0(e0;x0), T1(e1;x1); k). Again, it is easily seen that this composition

of strategies yields a winning strategy for the original game dEF((T0, x
0), (T1, x

1); k).

This completes the proof of the result.

2.1.2 Strategies on Fragments

Here we develop a winning strategy for dEF games played on fragments, i.e., structures

formed by the disjoint union of unicycles. We begin by giving a strategy for unicycles.

Let U be a unicycle whose cycle is C ⊆ U . Given a vertex v ∈ V (C), we write

T (U, v) for the tree induced by U on the set

{u ∈ V (U) | d(u,C) = d(u, v)},

and rooted at v. Intuitively, T (U, v) consists of the tree that “grows out” of v, as before.

Definition 2.3 (Equivalence of unicycles). Let U0, U1 be two unicycles whose cycles are

C0 ⊆ U0, C1 ⊆ U1. We write U0 ≡Ly
k U0 if there is an isomorphism f between C0 and

C1 satisfying that T (U0, v
0) ≡Ly

k T (U1, f(v0)) for all v ∈ V (C0).

Lemma 2.2. Let U0, U1 be two unicycles whose cycles are C0 ⊆ U0, C1 ⊆ U1, and

satisfying U0 ≡Ly
k U1. Then Duplicator wins the game dEF((U0, C0), (U1, C1); k).

Proof. We describe a winning strategy for Duplicator. Let f : V (C0) → V (C1) be an

isomorphism between C1 and C1 witnessing the fact that U0 ≡Ly
k U1. Each play of



Convergence Law for Sparse Random Structures 21

Spoiler belongs uniquely to some rooted tree T (Ui, v
i), where vi ∈ V (Ci). By definition

T (Ui, v
i) ≡Ly

k T (U1−i, v
1−i), where v1−i = f(vi), so Lemma 2.1 shows that Duplicator

has a winning strategy in dEF(T (U0, v
0), T (U1, v

1); k). Hence, Duplicator can follow

this strategy taking previous plays into account if necessary. It is straightforward to see

that this composition of strategies indeed produces a winning strategy for the original

game.

Definition 2.4 (Equivalence of fragments). Let H0, H1 be fragments. We write H0 ≡Ly
k

H1 if for all ≡Ly
k -classes of unicycles C the quantity

|{U connected component in Hi | U ∈ C}| .

is the same for i = 0 and i = 1, or is at least k in both cases.

Lemma 2.3. Let H0, H1 be fragments satisfying H0 ≡Ly
k H1. For i = 0, 1, let Xi ⊆

V (Hi) be the vertices which belong to cycles. Then Duplicator wins dEF((H0, X0),

(H1, X1); k).

Proof. Similarly to Lemma 2.1, Duplicator maintains a partial matching of connected

components from H0 and connected components from H1. At most one new pair will be

formed during each round, and the pairs (U0, U1) in will be chosen in such a way that

U0 ≡Ly
k U1. Suppose that in some round, Spoiler picks a vertex vi in some connected

component Ui ⊆ Hi. If Ui has already been paired to another component U1−i ⊆ H1−i,

then Duplicator can play according to a winning strategy in dEF((U0, C0), (U1, C1); k)

taking previous moves into account if necessary. Here Ci denotes the cycle in the unicyclic

component Ui. If Ui has not been paired yet, then by the definition of≡Ly
k over fragments,

there is some unpaired component U1−i ⊆ Hi−1 satisfying U0 ≡Ly
k U1. Hence, Duplicator

can add the pair (U0, U1) to the matching and chose his move according to a winning

strategy in dEF((U0, C0), (U1, C1); k), as before. Again, it is easy to check that this

composition of strategies yields a winning strategy for the original game.

2.1.3 Strategies on Sparse Structures

Definition 2.5. The r-core Core(G)|r of an structure G is the r-neighbourhood of all

cycles in G of length at most 2r + 1.

The final result of this section states that the k-type of sparse structures with some

additional properties depend only on the ≡Ly
k -class of their r-core, where r = 3k−1

2 . This

is the main model-theoretic ingredient in the proof of our convergence law, Theorem 2.1.

Definition 2.6. A structure G is r-simple if it contains no two cycles of length at

most 2r + 1 at a distance smaller than 2r + 1. Equivalently, G is r-simple if its r-core

Core(G)|r is a disjoint union of unicycles.
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Definition 2.7. Let G be a structure and k ∈ N. Let Tr be the set of ≡Ly
k -class C

of trees whose heights are at most r. Given C ∈ Tr, KC(r) denotes the set of vertices

v ∈ V (G) satisfying NG(v, r) ∈ C and d(v,Core(G)|r) > r + 1. A structure G is called

(k, r)-rich if the r-independence number of KC(r) is at least k for all classes C ∈ Tr.

Theorem 2.3. Let k ∈ N, r = 3k−1
2 . Let G0, G1 be two r-simple and (k, r)-rich struc-

tures satisfying Core(G0)|r ≡Ly
k Core(G1)|r. Then G0 ≡k G1

Proof. Let Si be the vertices belonging to some cycle of length at most 2r+1 lying in Gi

for i = 0, 1. We apply Theorem 2.2 to (G0, S0) and (G1, S1) to prove the result. For this

we need to show that both conditions of that theorem’s statement hold. Condition (1)

is straightforward: N(S0, r) ≡dFO
k N(S1, r) follows from the hypothesis Core(G0)|r ≡Ly

k

Core(G1)|r and Lemma 2.3. Condition (2) takes more effort. Fix t ≤ r. Let Fi(t) ⊆
V (Gi) be the set of vertices v with d(v, Si) > 2t+ 1, for i = 0, 1, as in Theorem 2.2. Let

z ∈ F0(t) ∪ F1(t). We need to show that the set

Ki(z, t) = {v ∈ Fi(t) | N(z, t) ≡dFO
k N(v, t)}

has t-independence number at least k for i = 0, 1. Fix i. Observe that N(z, t) is a tree,

as z lies far away from S0, S1. Let C be the ≡Ly
k -class of N(z, t). The trees in C have

height at most t ≤ r, so by the (k, r)-richness hypothesis there are k vertices v1, . . . , vk

in Gi lying at distance greater than 2r + 1 from each other and from Si satisfying

N(vj , r) ∈ C for j = 1, . . . , k. We claim that v1, . . . , vk all belong to Ki(z, t), showing

that the r-independence number of the set is at least k. Indeed, as d(vj , Si) > 2r + 1,

it holds vj ∈ Fi(t). Moreover, trees in C have height at most t, showing that N(vj , r) =

N(vj , t). Finally, by Lemma 2.1, N(vj , t) ≡Ly
k N(z, t) implies N(vj , t) ≡dFO

k N(z, t).

Thus v1, . . . , vk belong to Ki(z, t) and condition (2) from Theorem 2.2 holds. We have

shown that both hypotheses of that theorem hold, so it follows that G0 ≡FO
k G1, as we

wanted to prove.

2.2 The Landscape of Sparse Random Structures

This section is dedicated to probabilistic results about Gσ(n,p). The main improvement

over the published version of this work [41] is in the results related to the neighbourhoods

of fixed vertices (mainly theorem 2.4). Whereas in [41], the asymptotic distribution of

those neighbourhoods is computed via a (rather complicated) iterated application of the

Method of Moments, our proof here is based on a coupling with a multi-type branching

process.

Lemma 2.4 (Small cycle distribution). Let H1, . . . ,Hk be different unlabeled cycles. For

each 1 ≤ i ≤ k, let Xi = Xi(n) count the copies of Hi in Gσ(n,p). Then (X1, . . . , Xk)
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converge jointly in distribution to Poisλ1 × · · · × Poisλk , where

λi =
1

aut(Hi)

∏
1≤j≤|σ|

c
|Ej(Hi)|
j .

Proof. This is a direct application of the moment’s method (Theorem 1.4). Observe

that E [Xi] = λi + o(1). Fix numbers ai ∈ N for each 1 ≤ i ≤ k. To prove the result is

enough to show:

E

 ∏
1≤i≤k

(
Xi

ai

) =
∏

1≤i≤k

λi
ai!

+ o(1).

Let Ĥ be the disjoint union of a1 copies of H1, followed by a2 copies of H2, . . . , and

ak copies of Hk. Let X̂ = X̂(n) count the copies of Ĥ in Gσ(n,p). This way, E
[
X̂
]

=∏
1≤i≤k

λi
ai!

+ o(1). Let R be the set of unlabeled structures resulting from a non-disjoint

union of a1 copies of H1, followed by a2 copies of H2, . . . , and ak copies of Hk. The

variable Y = Y (n) counts the substructures in Gσ(n,p) isomorphic to some structure

in R. Observe that for all H ∈ R, ex(H) ≥ 1, so the expected number of H-copies

in Gσ(n,p) is o(1). As there is a finite number of such structures H, it holds that

E [Y ] = o(1). Finally, by definition, E
[∏

1≤i≤k
(
Xi
ai

)]
= E

[
X̂
]

+ O(E [Y ]), which equals∏
1≤i≤k

λi
ai!

+ o(1), as we wanted to prove.

We define the set of rooted-edge types as TpEσ = {(i, `) | 1 ≤ i ≤ |σ|, 1 ≤ ` ≤ ar(Ei)}.
Informally, each pair (i, `) ∈ TpEσ specifies a relation symbol Ei ∈ σ, and a position `

within [ar(Ei)] for the root. We introduce a variant of multi-type branching processes

[4] that approximate small neighbourhoods in Gσ(n,p)

Definition 2.8. For each (i, `) ∈ TpEσ , let Xi,` be a distribution over N. Let (Xi,`
n ),

where n ranges over N and (`, i) ranges over TpEσ , be mutually independent random

variables with X`,i
n ∼ X`,i. Fix t ∈ N. The t-root multi-type branching process

corresponding to σ with offspring distributions (X`,i)(`,i)∈TpEσ
is a sequence of

random variables (Yn)n∈N satisfying

Y0 = t, Yn =


Yn−1 − 1 +

∑
(`,i)∈TpEσ

(ar(E`)− 1)X`,i
n , if Yn−1 > 0,

0 otherwise.

Some insight is needed to make sense of last definition. This branching process

represents a random forest which is exposed in breath-first fashion, starting from the

t roots. At the n-th step, the n-th vertex v of the forest is selected and its outgoing

edges are exposed. The variable X`,i
n counts the number of type-(`, i) edges rooted at

v. Hence, in the n-th step,
∑

(`,i)(ar(E`)− 1)X`,i
n fresh vertices are added to the forest.
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The variable Yn counts the number of vertices in the forest whose outgoing edges have

not been exposed yet. Thus, the branching process ends when Yn = 0.

As in Definition 1.3, we identify multi-type branching processes BP with random

forests in the way outlined above. However, we do not give these random forests explicitly

- it is possible to do so via an Ulam-Harris-style construction as well -, but rather we

refer to some fixed unspecified breadth-first exploration order. We define BP|r as the

restriction of BP to its first r generations (i.e., the r-neighbourhood of the roots), and

BP|τ as the restriction of BP to its first τ individuals (i.e., the forest induced on the

first τ vertices).

Definition 2.9. For the remainder of this chapter the random tree T = T (c) is

the one-root multi-type branching process with offspring distributions X`,i ∼ Poisc`

for all types (`, i) ∈ TpEσ . For the t-root multi-type process with the same offspring

distributions we use T t. Given (`, i) ∈ TpEσ , the random branch T`,i is T conditioned

on the events X`,i
1 = 1, and X`′,i′

1 = 0 for all (`′, i′) 6= (`, i). The random fragment

Γ|r = Γ(c)|r is generated as follows: (1) given a cycle H containing at most 2r+1 edges,

Γ|r contains PoisλH disjoint copies of H, where λH = 1
aut(H)

∏
1≤i≤|σ| c

|Ei(H)|
i , and (2)

attach an independent copy of T |r to each vertex.

The main result in this subsection is that the r-neighborhood of a vertex v in Gσ(n,p)

converges in distribution to T |r. This is completely analogous to the local convergence

results for G(n, p) in the sparse regime.

Theorem 2.4. Fix t, r ∈ N. Let ρ = (ρ1, . . . , ρt) ∈ Nt be a t-tuple of different vertices.

Then the tuple of neighborhoods N(ρ, r) converges in distribution to T t|r.

Proof. Given τ ∈ N, we define Tn as the graph rooted at ρ which results from exposing

all edges incident to the first τ individuals belonging to ρ’s connected component, in

breadth-first order. We show that

Tn
d−→ T t|τ .

Observe that this implies the theorem. For each n, let BPn be the t-root multi-

type branching process with edge distribution Bin(nar(E`)−1, p`(n)) for each edge type

(`, i) ∈ TpEσ . As Bin(nar(E`)−1, p`(n)) in distribution to Poisc` , the branching process

BPn|τ converges in distribution to T t|τ as well. In particular, the sequence (BPn|τ )n∈N

of distributions over finite rooted forests is tight because of Lemma 1.4. In order to

show that Tn converges in distribution to T t|τ (when both Tn, T t|τ are seen as random

variables taking values in the set of finite unlabeled rooted graphs), it suffices to give a

coupling (Tn,BPn|τ ) satisfying

Pr(Tn 6' BPn|τ ) = o(1) (2.2)



Convergence Law for Sparse Random Structures 25

Using the Coupling Lemma (Lemma 1.2) together with Lemma 1.1 yields the result. We

describe the coupling below. Roughly, the idea is that the exploration of BPn|τ behaves

like the one of Tn, with the difference that when exposing all edges incident to some

vertex in BPn|τ , all possible edges on with vertices in [n] are considered. However, when

exposing Tn edges containing previously-explored vertices are not taken into account.

Our coupling is defined through auxiliary random variables W `,i
j . For each j ∈ [τ ], and

each type (`, i) ∈ TpEσ , W `,i
j is a random subset of [n]ar(E`)−1 where each tuple v belongs

to W `,i
j with probability p`(n). Moreover, the variables W `,i

j are mutually independent

for all j, (`, i). We couple BPn|τ to these variables by setting X`,i
j = |W `,i

j |. The variables

W `,i
j are coupled with the exploration of Tn as well. We say that the coupling fails at

the j-th step if either of the following are satisfied.

(1) A vertex v participating in some tuple v ∈
⊔

(`,i)

⊔
j′<jW

`,i
j′ (the symbol t stands

for the disjoint union of sets), participates again in some tuple v ∈
⊔

(`,i)W
`,i
j .

(2) Some vertex v participates in two tuples v,v′ ∈
⊔

(`,i)W
`,i
j .

(3) Some vertex v participates more than once in some tuple v ∈
⊔

(`,i)W
`,i
j .

Suppose the coupling has not failed yet at step j. Let v be the j-th vertex in the

exploration of Tn. The following edges are exposed: for each type (`, i) ∈ TpEσ and

tuple (u1, . . . , uar(E`)−1) ∈ W `,i
j , the edge (u1, . . . , ui−1, v, ui, . . . uar(E`)−1) is added to

E`(Tn). Otherwise, if the coupling fails at the j-th step, the exploration of Tn continues

independently of the variables W `,i
j . Observe that this is a valid coupling in the sense

that both BPn|τ and Tn have the desired distribution.

Let A = An be an event of the form X`,i
j = x`,ij for all (`, i) ∈ TpEσ , j ∈ [τ ], and some

fixed constants x`,ij . In other words, A is a particular outcome of BPn|τ . Using the fact

that the sequence (BPn|τ )n∈N is tight, to show Equation (2.2) it is sufficient to prove

Pr(Tn 6' BPn|τ | A) = o(1) (2.3)

We focus on this last identity. We condition the whole coupling on the event A. This way,

Ŵ `,i
j stands for the variable W `,i

j conditioned on the event A. Observe that the variables

Ŵ `,i
j are distributed as uniform subsets of [n]ar(E`)−1 of size x`,ij . The probability that

Tn 6' BPn is at most the probability that the coupling fails in the first τ rounds. We

estimate the probabilities of the coupling failing in the ways (1), (2) and (3) defined

above.

Let’s begin with (1). At step j, the expected number of tuples u ∈ Ŵ `,i
j contain-

ing some previously explored vertex tends to jx`,ij (ar(E`) − 1)/n. Thus, by Markov’s

inequality, the probability of (1) is 1−O(1/n). Now we estimate the probability of (2).

When exposing a set Ŵ `,i
j , at most V (T ) where revealed previously. The probability

that one of these participates in a tuple v ∈ Ŵ `,i
j is at most |V (T )|x`,ij (ar(E`)− 1)/n+
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o(1). Also, the probability that any two tuples in Ŵ `,i
j share a vertex is bounded by

|V (T )|(x`,ij )2(ar(E`) − 1)2/n + o(1). Hence, (2) holds with probability 1 − O(1/n) as

well. Finally, we examine (3). When exposing some Ŵ `,i
j , the probability that some

vertex appears twice in a tuple v ∈ Ŵ `,i
j is bounded by x`,ij (ar(E`)− 1)2/n+ o(1). This

shows that (3) also holds with probability 1 − O(1/n). The estimates for (1), (2) and

(3) show that Pr (BPn|τ 6' Tn | A) = O(1/n). This implies Equation (2.2) and proves

the theorem.

An easy corollary of this result is that w.h.p. bounded-radius neighbourhoods of

fixed vertices are disjoint, and those neighbourhoods contain no cycles. The following

lemma rephrases this slightly.

Corollary 2.1. Let ρ1, ρ2 ∈ N be two fixed vertices, and let r ∈ N. Then (1) w.h.p. the

distance between ρ1 and ρ2 is greater than r in Gσ(n,p) and (2) w.h.p. ρ1 is at distance

greater than r from all cycles of length at most 2r + 1 in Gσ(n,p).

As small cycles occur far away from fixed vertices in Gσ(n,p), it is reasonable that

the small neighbourhoods of those vertices should be independent from the number of

small cycles. Next result proves this intuition right.

Lemma 2.5. Let (ρ1, . . . , ρt) ∈ Nt be a set of roots, and let F be a t-root forest of height

at most r. Then the event Nn(ρ, r) ' F is asymptotically independent from the event

that Gσ(n,p) has no cycles of length at most 2r + 1.

Proof. Let An be the event that Gσ(n,p) has no cycles of length at most 2r + 1. We

show that Pr(An | Nn(ρ, r) ' F ) = Pr(An) + o(1). Let F∗ be a fixed copy of F whose

roots are ρ and whose vertices V (F∗) lie in N. By symmetry Pr(An | Nn(ρ, r) ' F )

equals Pr(An | Nn(ρ, r) = F∗). Given Nn(ρ, r) = F∗, it is sufficient that P1: the roots

in ρ are at distance greater than 2r+ 1 from each other and from all cycles of length at

most 2r + 1, and P2: the structure G′n induced by Gσ(n,p) on [n] \ V (F ) contains no

cycles of length at most 2r + 1. By Corollary 2.1, P1 occurs with probability 1 − o(1).

Observe that Nn(ρ, r) ' F has probability bounded away from zero by Theorem 2.4,

and Pr(P1 | Nn(ρ, r) = F∗) = Pr(P1 | Nn(ρ, r) ' F ), so Pr(P1 | Nn(ρ, r) = F∗) =

1− o(1). As for P2, it is easy to see that G′n is distributed like Gσ(n− n(F ),p′), where

p′ = (p′1, . . . , p
′
|σ|) satisfies pi ∼ p′i. Thus Pr(P2) = Pr(An) + o(1). As P2 is independent

from Nn(ρ, r) = F∗, conditioning on that event does not change the probability. Hence,

by intersection bound Pr(P1 ∧ P2 | Nn(ρ, r) = F∗) = Pr(A) − o(1), and this quantity

is smaller than Pr(A | Nn(ρ, r) = F∗). On the other hand, the event P2 is a necessary

condition for A, so Pr(A | Nn(ρ, r) = F∗), so this probability is also bounded from above

by Pr(A) + o(1) as well, yielding the result.
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Having established the limiting distribution of small neighbourhoods in Gσ(n,p), we

move on to studying the r-core Coren|r of Gσ(n,p) (recall Definition 2.5).

Lemma 2.6. The r-core Coren|r converges in distribution to Γ|r.

Proof. Fix a r-fragment G. We prove that Pr(Coren|r ' G) = Pr(Γ|r ' G) + o(1). We

do this in two parts. First we observe that the cycle distribution in Coren|r and Γ|r is

the same, and afterwards we show that the trees that hang from the cycles have the same

distribution. Let H be the union of cycles in G, HΓ be the union of cycles in Γ|r, and

HCore = HCore(n) be the union of cycles in Coren|r. By Lemma 2.4 and the definition

of Γ|r, we have Pr(HCore ' H) = Pr(HΓ ' H) + o(1). Let H∗ be a fixed copy of H

with vertex set V (H∗) ⊆ N. By symmetry, Pr(Coren ' G | HCore ' H) = Pr(Coren '
G | HCore = H∗). Let Gn = Gσ(n,p) \ E(H∗). Given HCore = H∗, Coren|r ' G if and

only if the r-neighbourhood of ρ = V (H∗) in Gn belongs to some finite class F of rooted

unlabeled forests. We define the following events: PH∗ ≡ “H∗ ⊂ Gσ(n,p)”, Pcycl ≡ “

Gn contains no cycle of length at most 2r + 1”, and Pdist ≡ “vertices in V (H∗) lie at

distance greater than 2r+ 1 from each other and from all other cycles of length at most

2r + 1 in Gn”. The following implications hold:

PH∗ ∧ Pcycl ∧ Pdist =⇒ HCore = H∗ =⇒ PH∗ ∧ Pcycl.

When studying the neighbourhood of H∗, we would rather condition to PH∗ ∧Pcycl than

to HCore = H∗, which is a more complex event. To do this rigorously, it is required

that, w.h.p., HCore = H∗ ⇐⇒ PH∗ ∧ Pcycl. We claim this is the case. It suffices to

prove Pr(Pdist | PH∗ ∧ Pcycl) = 1 − o(1) by the implications above. Notice that Pdist

is independent from PH∗ , so Pr(Pdist | PH∗ ∧ Pcycl) = Pr(Pdist | Pcycl). However, Pcycl

holds with probability bounded away from zero by Lemma 2.4 and P3 holds a.a.s by

Corollary 2.1, yielding Pr(Pdist | Pcycl) = 1 − o(1), as we wanted. This proves that

(NGn(ρ, r) | HCore = H∗) converges in distribution to (NGn(ρ, r) | PH∗ ∧ Pcycl). Finally,

by Theorem 2.4, we know that (NGn(ρ, r) | PH∗ ∧ Pcycl) converges in distribution to

multiple copies of BP|r. By definition, this is the distribution of the trees growing out

of Γ|r’s cycles. Thus Pr(Coren ' G | HCore ' H) = Pr(Γ|r ' G | HΓ ' H) + o(1) and

the theorem holds.

Corollary 2.2. Let r ∈ N. Then w.h.p. Gσ(n,p) is r-simple.

Proof. The structure Gσ(n,p) fails to be r-simple if and only if its r-core Coren|r contains

some complex component. However, as proven in the previous lemma, Coren|r is a

fragment w.h.p.
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2.3 Proof of the Convergence Law

In this section we prove the FO-convergence law for Gσ(n,p) stated in Theorem 2.1.

This is done by showing that (1) k-type of Gσ(n,p) a.a.s. depends only on the ≡Ly
k -class

of Coren|r, where r = 3k−1
2 , and (2) the limit probability that Coren|r belongs to a given

≡Ly
k -class is an expression in Expr. Fact (1) follows from applying our result on inside-

out strategies, Theorem 2.2. However, (2) requires some work. The beginning of the

section focuses on this, first by studying the asymptotic probabilities of ≡Ly
k -classes of

trees, and then doing the same for fragment classes. The following is a straight-forward

observation about Expr that will be useful later.

Lemma 2.7. The expressions ω ∈ Expr take positive values in (0,∞)|σ|, and are ana-

lytic. That is, there is some complex analytic extension of ω to some open set U , where

(0,∞)|σ| ⊂ U ⊂ C|σ|.

2.3.1 Probabilities of Tree Classes

Let T = T (c) be the random tree introduced in Definition 2.8. Our goal here is to

inspect the probability that T |r belongs to a particular ≡Ly
k -class of trees. Let C be a

≡Ly
k -class of trees of height at most r. Then µC,r = µC,r(c) denotes the probability that

T |r ∈ C. Analogously, µ`,iC,r is the probability that T `,i|r ∈ C, where T `,i is the random

branch, also given in Definition 2.8.

Theorem 2.5. Let C be a ≡Ly
k -class of trees of height at most r. Then µC,r ∈ Expr.

Proof. Let T = T |r and let x be T ’s root. The proof is by induction on r. For r = 0 there

is only one ≡Ly
k -class C, so T ∈ C with probability 1. As 1 ∈ Expr, the statement holds.

Now assume the theorem holds up to r− 1. First, let C be a ≡Ly
k -class of branches with

height at most r, and let (`, i) be the type of the initial edge of the branches in C (observe

that this type is the same for all the branches in C, so (`, i) is well defined). Define T `,i

as the random branch T `,i|r, with root x. Let e = (v1, . . . , vi−1, x, vi, . . . , var(E`)−1) be

the only edge incident to x in T `,i. The ≡Ly
k -class of T `,i is determined by the trees that

hang from the non root vertices vj . More concretely, the event T `,i ∈ C is equivalent to∧
1≤j≤ar(E`)−1

T `,i(vj ;x) ∈ Cj ,

for some fixed ≡Ly
k -classes C1, . . . , Car−1 determined by C, that consist of trees with height

at most r−1. The trees T `,i(vj ;x) are independent copies of T |r−1, so µ`,iC,r =
∏
j µCj ,r−1,

where j ranges from 1 to ar(E`)−1. Observe that by induction each factor µCj ,r−1 belongs

to Expr, so the whole product does as well. Consider now the original tree T = T |r.
Given a ≡Ly

k -class C′ of branches whose heights are at most r, the random variable XC′
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counts the number of initial edges e in T whose branch T (e;x) belongs to C′. The branch

T (e;x) is distributed like T `,i, where (`, i) is the type of e, and is independent of all other

branches. This implies XC′ ∼ PoisλC′ independently, where λC′ = c` µ
`,i
C′,r, and (`, i) is

the initial edge type determined by C′. We established above that µ`,iC′,r belongs to Expr,

so that is the case for λC′ as well. Now let C be an arbitrary ≡Ly
k -class of trees whose

height is at most r. The event T ∈ C is equivalent to ∧
C′∈C−

XC′ = aC′

 ∧
 ∧
C′∈C+

XC′ > k

 ,

for some partition C−∪C+ of the ≡Ly
k -classes of branches whose height is at most r, and

some constants aC′ ∈ N. By the arguments above, all the events in this conjunction are

mutually independent, and

Pr(T ∈ C) =

 ∏
C′∈C−

Pr(XC′ = aC′)

×
 ∏
C′∈C+

Pr(XC′ > k)

 .

Moreover, Pr(XC′ = aC′) is precisely PoisλC′ (aC′), so it belongs to Expr by virtue of

λC′ ∈ Expr. Similarly, Pr(XC′ > k) = 1 −
∑k

i=0 PoisλC′ (i), also belongs to Expr. Thus,

Pr(T ∈ C) ∈ Expr, concluding the proof.

Corollary 2.3. Let k, r ∈ N. Then Gσ(n,p) is (k, r)-rich w.h.p.

Proof. Given a ≡Ly
k -class C of trees whose heights are at most r, let KC = KC(r) be as

in Definition 2.7. Let A = A(n) be the event that the r-independence number of KC is

smaller than k. Fix a small ε > 0. We show that Pr(A) < ε + o(1). This proves the

result. Let a be the smallest number such that Pr(Bin(a, µC,r) < k) < ε. The existence

of such a follows from E [Bin(a, µC,r)] = a µC,r, which tends to infinity with a, using any

concentration bound for the binomial distribution. By Corollary 2.1, the vertices labeled

1, . . . , a ∈ N a.a.s. lie at distance greater than 2r + 1 from each other. Let X = X(n)

count the vertices v ∈ [a] satisfying Nn(v, r) ∈ C. By Theorem 2.4, X converges in

distribution to Bin(a, µC,r). Hence

Pr(A) ≤ Pr(X < k) ≤ ε+ o(1),

as we wanted. This completes the proof.

2.3.2 Probabilities of Fragment Classes

Here we study the probability that Coren|r belongs to a particular ≡Ly
k -class. We use

the following easy-to-derive fact about Poisson distributions.
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Lemma 2.8. Let S be some finite set and D some distribution over S. Let (Xi)
∞
i=1 be

a sequence of identically distributed random variables Xi ∼ D. Let λ ∈ (0,∞), and let

Z ∼ Poisλ be another variable independent from (Xi)
∞
i=0. For each element s, define the

variable Ys = {i | 1 ≤ i ≤ Z, Xi = s}. Then Ys ∼ Poisλβs, where βs = Pr(D = s).

Theorem 2.6. Let C be a ≡Ly
k -class of r-fragments. Then the probability that Coren|r ∈

C converges to an expression belonging to Expr.

Proof. Instead we prove that Pr(Γ|r ∈ C) belongs to Expr, where Γ|r is the random

fragment defined at Definition 2.8. By Lemma 2.6 this is equivalent to the theorem.

Let D1, . . . ,D` be the ≡Ly
k -classes of r-unicycles, and let Xi be count the number of

components in Γ|r belonging to Di for 1 ≤ i ≤ `. The event that Γ|r ∈ C is, by

definition, equivalent to  ∧
Di∈D−

Xi = ai

 ∧
 ∧
Di∈D+

Xi ≥ k


for some partition D−∪D+ of D1, . . . ,D` and some constants 0 ≤ ai < k for all Di ∈ D−.

In order to prove that Pr(Γ|r ∈ C) ∈ Expr, we show that the X1, . . . , X` are distributed

as mutually independent Poisson variables Poisµ1 , . . . ,Poisµ` , where each µi belongs to

Expr. This is clearly sufficient, given the definition of Expr and the conjunction of events

above. For each class of unicycles Di let Hi be a representative and let Ci ⊆ Hi be its

corresponding cycle or the empty structure if Hi is empty. The quantity aut(Di) is

defined as the number of automorphisms φ of Ci that preserve the classes of the hanging

trees. That is T (U, v) ≡Ly
k T (U, φ(v)) for all v ∈ V (Ci). Observe that the definition of

aut(Di) does not depend on the chosen representative. For each v ∈ V (Ci), let Bv be

the ≡Ly
k -class of the tree T (U, v). The expression λDi,r is given by

λDi,r = λCi
aut(Ci)

aut(Di)
∏

v∈V (Ci)

µBv ,r,

Note that, again, λDi,r does not depend on the selected representative Ui. Observe as

well that λDi,r belongs to Expr by Theorem 2.5. Consider a copy C∗ of Ci in the random

r-fragment Γ|r. The probability that C∗’s component, denoted U∗, belongs to the class

Di is exactly λDi,r. Indeed, the number of ways to choose the ≡Ly
k -class of the tree

T (v, U∗) for each vertex v ∈ V (C∗) so that the component U∗ belongs to Di is precisely
aut(Ci)
aut(Di) . Also, given a choice of tree classes, the probability that all the trees T (v, U∗)

belong to their prescribed classes simultaneously is
∏
v∈V (Ci)

µTv ,r, as each tree is an

independent copy of BP|r. Remember that the number of Ci-copies in Γ|r follows the

distribution PoisλCi , where λCi = 1
aut(Ci)

∏
1≤j≤|σ| c

|Ej(Ci)|
j . Hence by Lemma 2.8 the

variables Xi have distribution Poisµi , where µi = λCiλDi,r, independently. As both λCi
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and λDi,r belong to Expr, so does µi, proving the result.

2.3.3 Main Result

Proof of Theorem 2.1. Let ϕ ∈ FO[σ] be a sentence, let k = qr(ϕ), and r = (3k − 1)/2.

Let C1, . . . , C` be an enumeration of all ≡Ly
k -classes of r-fragments. For each i, let Ai(n)

be the event that Gσ(n,p) is r-simple, (k, r)-rich, and Coren|r ∈ Ci. By Corollary 2.2 and

Corollary 2.3, Gσ(n,p) is r-simple and (k, r)-rich w.h.p., so
∑`

i=1 Pr(Ai(n)) = 1− o(1),

and

Pr(Gσ(n,p) |= ϕ) =
∑̀
i=1

Pr(Gσ(n,p) |= ϕ | Ai(n)) Pr(Ai(n)) + o(1).

By Theorem 2.3, Pr(Gσ(n,p) |= ϕ | Ai(n)) tends to either zero or one for each i,

depending only on the class Ci. Let I ⊆ [`] be the set of indices for which this expression

tends to one. Then,

Pr(Gσ(n,p) |= ϕ) =
∑
i∈I

Pr(Ai(n)) + o(1).

Finally, as Gσ(n,p) is r-simple and (k, r)-rich w.h.p., Pr(Ai(n)) = Pr(Coren|r ∈ Ci) +

o(1), implying that

Pr(Gσ(n,p) |= ϕ) =
∑
i∈I

Pr(Coren|r ∈ Ci) + o(1).

However, the probabilities in the sum converge to expressions in Expr by Theorem 2.6,

so the result follows.

2.4 Convergence Law For Derived Models

During this section we extend the convergence given in Theorem 2.1 to slightly more

complex models of random structures. In the graph setting, one may consider directed

or undirected graphs, as well as graphs with or without self-edges (i.e., loops). In logical

terms, those natural variants correspond to choosing whether the adjacency relation

between vertices is symmetric and anti-reflexive. Each of those graph notions admits

a natural random binomial model analogous to G(n, p): namely, take n vertices and

place each possible edge between them with probability p independently. In a similar

vein, we consider arbitrary relational structures subject to some given symmetry and

anti-reflexivity axioms, and study their corresponding binomial models.
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A symmetry axiom for the relation Ei ∈ σ is a sentence of the form

Sym(Ei,Φ) =
∧
ϕ∈Φ

∀x1, . . . , xarEi Ei (x1, . . . , xarEi) =⇒ Ei
(
xϕ(i), . . . , xϕ(arEi)

)
,

where Φ is a subgroup of the symmetric group on [ar(Ei)]. Given this axiom, Φ is called

the symmetry group of Ei. An irreflexivity axiom for Ei is a sentence of the form

Irrflx(Ei, I) =
∧

(s,t)∈I

∀x1, . . . , xarEi (xs = xt) =⇒ ¬Ei(x1, . . . , xarEi),

where I ⊆
(

[ar(Ei)]
2

)
is called the set of Ei’s irreflexivity constraints.

We consider a theory Γ consisting of symmetry axioms Sym(R1,Φ1), . . . ,Sym(R|σ|,

Φ|σ|) together with irreflexivity axioms Irrflx(R1, I1), . . . , Irrflx(R|σ|, I|σ|). Our first goal

during this section is to define an appropriate random model of σ-structures satisfying

this theory. Let G be one of those structures. Given a tuple v ∈ V (G)ar(Ei), its orbit

with respect to the action of Φi comprises all tuples of the form (vϕ(1), . . . , vϕ(ar(Ei))),

where ϕ ∈ Φi. We write V (G)ar(Ei)/Φi for the set of all such orbits, and [v] for the orbit

corresponding to a tuple v ∈ V (G)ar(Ei). Observe that a tuple v belongs to Ei(G) if and

only if the whole orbit [v] is part of Ei(G). Thus, a natural way of randomly constructing

Ei(G) would be to decide whether [v] ⊆ Ei(G) for each orbit independently with some

probability. However, some classes violate irreflexivity constraints and are forbidden -

e.g., think of loops in loop-less graphs. We call a class [v] ∈ V (G)ar(Ei)/Φi forbidden if it

contains a tuple (u1, . . . , uar(Ei)) where us = ut for some {s, t} ∈ Ai. The set of forbidden

classes in V (G)ar(Ei)/Φi is denoted by ForbV (G)(Ei), or Forbn(Ei) if V (G) = [n].

Let (q1, . . . , q|σ|) be a tuple of probabilities. The random structure GσΓ(n, q) is con-

structed by setting [v] ⊆ Ei(GσΓ(n, q)) with probability qi independently for all [v] ∈
[n]ar(Ei)/Φi \ Forbn(Ei) and all 1 ≤ i ≤ |σ|. Observe that by definition GσΓ(n, q) satisfies

the theory Γ and all σ-structures on [n] satisfying this theory have positive probability.

As before, we consider structures of linear density. That is, p(n) = (p1(n), . . . , p|σ|(n))

where, pi(n) ∼ ci/n
ar(Ei)−1 for some c = (c1, . . . , c|ar|). The main result of this section

is an extension of Theorem 2.1 to GσΓ(n,p).

Theorem 2.7. Consider a FO[σ]-sentence φ. Then the limit

pφ(c) = lim
n→∞

Pr(GσΓ(n,p) |= φ)

exists for all values c ∈ (0,∞)|σ|. Moreover, for any fixed φ, pφ(c) is a finite (possibly

empty) sum of expressions belonging to Expr.

Roughly, to prove this result we interpret GσΓ(n,p) through a simpler model Gσ̂(n, p̂),

in such a way that sentences φ ∈ FO[σ] about the original model correspond to sentences
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φ̂ ∈ FO[σ] about the interpretation. This way, the events GσΓ(n,p) |= φ and Gσ̂(n, p̂) |= φ̂

have the same asymptotic probability.

2.4.1 Adding Symmetries

Given σ = {E1, . . . , E|σ|}, we define σ̂ as

σ

|σ|⋃
i=1

{Es,ti | 1 ≤ s < t ≤ ar(Ei)},

where each relation symbol Ei retains its arity from σ, and ar(Es,ti ) = ar(Ei). We map

each sentence φ ∈ FO[σ] to another one φ̂ ∈ FO[σ̂] by replacing, for all i = 1, . . . , |σ|,
each occurrence of Ei(x1, . . . , xar(Ei)), with

Êi(x1, . . . , xar(Ei)) ≡
∨
g∈Φi

Ẽi(xg(1), . . . , xg(ar(Ei))),

where Ẽi(y) stands for the formula given by

Ei(y)
∧

1≤s<t
≤ar(Ei)

ys 6= yt

 ∨
1≤s<t
≤ar(Ei)

Es,ti (y) ∧ ys = yt
∧

1≤s′<t′≤ar(Ei)
(s,t) 6=(s′,t′)

ys′ 6= yt′

 .

Given 1 ≤ s < t ≤ |ar(Ei)|, we define Φs,t
i as the subgroup of Φi consisting of all

permutations g which leave s and t fixed- i.e., g(s) = s, g(t) = t. For convenience, we

index tuples of probabilities p̂ ∈ [0, 1]|σ̂| following the same convention as σ̂. That is, p̂i

corresponds to Ei, whereas p̂s,ti corresponds to Es,ti . Given p = p(n) we build the tuple

p̂ = p̂(n) in the following way:

1. If ar(Ei) = 2 and Φi is the symmetric group S2, then p̂i(n) = pi(n)

1+
√

1−pi(n)
, and

p̂1,2
i (n) = pi(n).

2. Otherwise p̂i(n) = 1
|Φi|pi(n) and p̂s,ti (n) = 1

|Φs,ti |
pi(n) for all 1 ≤ s < t ≤ ar(Ei).

Observe that if p satisfies pi(n) ∼ ci/n
ar(Ei)−1 for all i and some positive real con-

stants c1, . . . , c|σ|, as is assumed throughout this chapter, then the sequence of probabil-

ities p̂ is also of the form required by Theorem 2.1 with respect to the signature σ̂. In

other words, Gσ̂(n, p̂) satisfies a FO convergence law.

Lemma 2.9. Let σ̂, p̂ be defined as above. Let v ∈ Nar(Ei) be a tuple of vertices, where

at most one vertex occurs exactly twice and all the others once. Then both

Pr
(
Gσ̂(n, p̂) |= Êi(v)

)
≤ pi(n)
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and Pr
(
Gσ̂(n, p̂) |= Êi(v)

)
= pi(n) + o(1/nar(Ei)) hold. Otherwise, if v is of another

form, Pr
(
Gσ̂(n, p̂) |= Êi(v)

)
= 0.

Proof. The second part of the lemma follows directly from the definition of Êi. We prove

the first part for the case where v contains no repetitions. The case where v has some

vertex appearing twice can be shown analogously. By definition, Êi(v) is equivalent to∨
g∈Φi

w=(vg(1),...,vg(ar(Ei)))

Ei(w). (2.4)

We distinguish two cases. First, if ar(Ei) = 2 and Φi is the symmetric group on two

elements, then Êi(v1, v2) is equivalent to Ei(v1, v2)∨Ei(v2, v1), so by inclusion-exclusion

Pr
(
Gσ̂(n, p̂) |= Êi(v)

)
= 2p̂i − (p̂i)

2 = pi,

fulfilling the statement. Otherwise suppose that ar(Ei) > 2. Using the union bound on

Equation (2.4), we obtain

Pr
(
Gσ̂(n, p̂) |= Êi(v)

)
≤ |Φi|p̂i = pi.

Similarly, the first Bonferroni inequality yields

Pr
(
Gσ̂(n, p̂) |= Êi(v)

)
≥ |Φi|p̂i −

|Φi|(|Φi| − 1)

2
(p̂i)

2 = pi − o(1/nar(Ei)).

Last equality follows from the fact that p̂i = O(n1−ar(Ei)) and ar(Ei) > 2. This equation

together with the last one show the desired result.

Theorem 2.8. Given ϕ ∈ FO[σ],

Pr
(
GσΓSym

(n,p) |= ϕ
)

= Pr
(
Gσ̂(n, p̂) |= ϕ̂

)
+ o(1/n).

Proof. For convenience we shorten GσΓSym
(n,p) to Gn, and Gσ̂(n, p̂) to Ĝn. In Gn we

write Ei[v] for the sentence
∧

u∈[v]Ei(u), and in Ĝn we write Êi[v] for
∧

u∈[v] Êi(u)

as well, where [v] stands for v’s orbit in [n]ar(Ei)/Φi. Note that the events Ei[v] are

mutually independent in Gn for all the different orbits [v] and indices 1 ≤ i ≤ |σ|, and

the same holds true for the events Êi[v] in Ĝn. Moreover, Gn can be described as the

independent product of the Bernoulli variables Ei[v]. By last lemma, the probability

that Ĝn |= Êi[v] is at most pi, which is precisely the probability that Gn |= Ei[v]. This

way, there is a coupling (Gn, Ĝn where Ĝn |= Êi[v] implies Gn |= Ei[v]. We claim that

within this coupling Ĝn |= Êi[v] ↔ Gn |= Ei[v] holds simultaneously for all 1 ≤ i ≤ |σ|
and all v with probability o(1). Fix 1 ≤ i ≤ |σ|. Let Un ⊆ [n]ar(Ei) be the set of
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tuples containing less than ar(Ei) − 1 different vertices. The size of Un is o(nar(Ei)−1),

so expected number of tuples v ∈ Un satisfying Ei[v] is o(1), and we do not need to take

this set into account. Now, the size of [n]ar(Ei) \Un is O(nar(Ei)), and by last lemma, the

probability that for a tuple v ∈ [n]ar(Ei) \ Un, the event Ei[v] ∧ ¬Êi[v] is o(1/nar(Ei)),

uniformly over the choice of v. Thus, using the union bound, the probability that this

occurs for any v ∈ [n]ar(Ei) \ Un is o(1).

We have shown that within the coupling Πn, for all 1 ≤ i ≤ |σ|, the sentence

ψi := ∀xEi[x] ⇐⇒ Êi[x] holds with probability 1−o(1). Observe that given a sentence

ϕ ∈ FO[σ], ϕ̂ ⇐⇒ ϕ follows from
∧

1≤i≤|σ| ψi. As
∧

1≤i≤|σ| ψi holds with probability

1− o(1), the result Pr(Ĝn |= ϕ̂) = Pr(Gn |= ϕ) + o(1) follows.

Corollary 2.4. Theorem 2.7 holds if Γ consists only of symmetry axioms. That is, if

Γ = ΓSym.

Proof. The fact that GσΓSym
(n,p) satisfies a FO-convergence law follows from last result,

using that a FO-convergence law already holds in Gσ̂(n, p̂), because

lim
n→∞

Pr(GσΓSym
(n,p) |= ϕ) = lim

n→∞
Pr(Gσ̂(n, p̂) |= ϕ̂).

Also, ĉ is a tuple of expressions in Exprc, meaning that the limit on the right belongs

to Exprc itself, proving the result.

2.4.2 Adding Irreflexivity Constraints

In this section we complete the proof of our generalization, Theorem 2.7, by showing

that it holds when Γ includes irreflexivity axioms.

Proof of Theorem 2.7. Let Gn = GσΓ(n,p), GSym
n = GσΓSym

(n,p). Proving Theorem 2.7

amounts to showing that the asymptotic probability of GSym
n |= ΓIrrflx is positive. If this

holds, the result easily follows: By definition

Pr(Gn |= ϕ) = Pr
(
GSym
n |= ϕ

∣∣∣ GSym
n |= ΓIrrflx

)
=

Pr(GSym
n |= ϕ ∧ ΓIrrflx)

Pr(GSym
n |= ΓIrrflx)

.

As Irrflx is a first-order property, last result tells us that both numerator and denom-

inator in the last fraction converge to (possibly empty) sums of expressions in Exprc.

We only need to see that the denominator is bounded away from zero. For this, observe

that Irrflx amounts to the fact that GSym
n does not contain any copy of H1, . . . ,H`, where

the Hi are cycles given by Irrflx. Using the method of moments, in the same fashion as

Lemma 2.4, shows that the number of Hi-copies in GSym
n converge jointly to a product

of Poisson distributions with positive mean. This proves the result.
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2.5 Application to Random SAT

In this section we give an application of the general convergence law given in Theorem 2.7

to the study of satisfiability of random CNF formulas.

Given a variable x, both expressions x and ¬x are called literals. A clause is a set

of literals. A clause C is called non-tautological if C does not contain two literals of

the form x and ¬x for any variable x. An assignment over a set of variables X is a

map f : X → {0, 1} . A clause C is satisfied by an assignment f if f(x) = 1 for some

variable x with x ∈ C, or f(x) = 0 for some variable x with ¬x ∈ C. Given ` ∈ N
a `-CNF formula is a set of non-tautological clauses that contain exactly ` literals

each. We say that a formula F on the variables x1, . . . , xn is satisfiable if there is an

assignment f : {x1, . . . , xn} → {0, 1} that satisfies all clauses in F .

The k-SAT problem is the problem of deciding whether a given k-CNF formula is

satisfiable or not. For k > 2, this is the prototypical NP-complete problem [3][Section

2.3.5]. As such, the search for an efficient algorithm solving k-SAT, or a proof that such

algorithm cannot exist, is one of the central problems of theoretical computer science in

present times. It is known that a phase transition occurs at random k-CNF formulas

with n variables and cn clauses: there are constants c0, c1 such that when c < c0, typical

formulas are satisfiable, and when c > c1, typical formulas are unsatisfiable [14]. In

fact, a well-known conjecture, proven for large k, is that one can take c0 = c1 [19]. The

complexity of random k-SAT on random formulas near to this “satisfiability threshold”

has been a relevant object of study for various areas in the literature, such as proof

complexity [15], applied statistical physics [55], and hardness of approximation [22]. An

important question in this area is whether there is a computationally “simple” (i.e.,

easy to recognize) property P that implies unsatisfiability of k-CNF formulas and can

be used to recognize most unsatisfiable random instances [22, 26, 5]. The most notable

example of a somewhat complex property being certified by a simpler one on random

structures occurs with graph connectivity. A famous result by Erdös and Rènyi states

that, at the connectivity threshold p(n) = lnn/n+c/n, w.h.p. the random graph G(n, p)

is disconnected if and only if it contains some isolated vertex [20].

In [6, 5], Atserias employed a model-theoretical approach to the study of unsat-

isfiability certificates in random k-SAT. The first publication [6], considers certificates

expressible in the Datalog language, and the second, [5], FO sentences. Our contribution

in this section extends this second paper. In there, 3-CNF formulas are represented as

relational structures. The main result of the article is that when the number of clauses

in the random formula is Θ(n2+α) for some α > 0, where n stands for the (growing)

number of variables, then there is some FO sentence ϕ that implies unsatisfiability and

holds w.h.p. Conversely, when the number of clauses is Θ(n2−α) for some irrational

α > 0, then no FO sentence ϕ implying unsatisfiability holds w.h.p. We extend this
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result for the case where the number of clauses is linear in the number of variables. The

main result of this section, Theorem 2.9, states that in this situation no FO property

certifying unsatisfiability holds with probability bounded away from zero.

We define a binomial model of random CNF formulas along the lines of [14], but the

generality in Theorem 2.7 allows for many variants.

Given n, l ∈ N and a real number 0 ≤ p ≤ 1 we define the random model F `(n, p)
as the discrete probability space that assigns to each `-CNF formula F on the variables

{xi}i∈[n] the probability

Pr(F ) = p|F |(1− p)2`(n`)−|F |,

where |F | is the number of clauses in F . Equivalently, a random formula in F `(n, p)
is obtained by choosing each of the 2`

(
n
`

)
non-tautological clauses of size ` on the vari-

ables {xi}i with probability p independently. We denote by F `n(β) a random sample of

F `(n, β/n`−1).

We consider `-CNF formulas, as defined above, as relational structures with a lan-

guage σ consisting of `+ 1 relation symbols R0, . . . , Rl of arity `. We do that in such a

way that the expression Rj(xi1 , . . . , xil) means that our formula contains the clause con-

sisting of ¬xi1 , . . . ,¬xij and xij+1 , . . . xil . The relations R1, . . . , Rl satisfy the following

axioms: (1) given 0 ≤ j ≤ l and variables y1, . . . , yl the fact that Rj(y1, . . . , yl) holds is

invariant under any permutation of the variables y1, . . . , yj or yj+1, . . . , yl, and (2) for

any 0 ≤ j ≤ l and any variables y1, . . . , yl it holds that Rj(y1, . . . , yl) only if all the yi

are different. Call Γ to the theory consisting of those symmetry and anti-reflexivity ax-

ioms. Then the random model Fl(n, p) corresponds to the random σ-structure GσΓ(n,p)

described in Section 2.4 when p is a tuple of probabilities all equal to p. We obtain the

following result as a particular case of Theorem 2.7.

Theorem 2.9. Let ` > 1 be a natural number. Then for each sentence Φ ∈ FO[σ] it is

satisfied that the map fΦ : (0,∞)→ R given by

β 7→ lim
n→∞

Pr(F `n(β) |= Φ)

is well defined and analytic.

The following is a well known result regarding random CNF formulas.

Theorem 2.10. Let ` ≥ 2 be a natural number, and let c ∈ (0,∞) be an arbitrary real

number. Let m : N → N be such that m(n) ∼ cn. For each n let Cn,1, . . . , Cn,m(n)

be clauses chosen uniformly at random independently among the 2`
(
n
`

)
non-tautological

clauses of size ` over the variables x1, . . . , xn. For each n, let UnSatn denote the

event that there is no assignment of the variables x1, . . . , xn that satisfies all clauses

Cn,1, . . . , Cn,m(n). Then there are two real constants 0 < c1 < c2, such that a.a.s UnSatn

does not hold if c < c1, and a.a.s UnSatn holds if c > c2.
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The existence of c1 is proven in [14, Theorem 1]. The fact that c2 exists follows from

a direct application of the first moment method and is also shown for instance in [14,

24, 16]. We want to show that an analogous “phase transition” also happens in F `(n, p)
when p ∼ β/n`−1. We start by showing the following

Corollary 2.5. Let ` ≥ 2 be a natural number. Let c ∈ (0,∞) be an arbitrary real

number and let m : N → N satisfy m(n) ∼ cn. For each n ∈ N let F `(n,m(n)) be a

random formula chosen uniformly at random among all sets of m(n) non-tautological

clauses of size ` over the variables x1, . . . , xn. Then there are two real positive constants

0 < c1 < c2 such that a.a.s F `(n,m(n)) is satisfiable if c < c1, and a.a.s F `(n,m(n)) is

unsatisfiable if c > c2.

Proof. For each n ∈ N let Cn,1, . . . , Cn,m(n) and UnSatn be as in the previous theorem.

One can consider F `(n,m(n)) to be the result of selecting clauses Cn,1, . . . , Cn,m(n) uni-

formly at random independently among all possible clauses, given the fact that no two

clauses Cn,i, Cn,j are equal. Hence,

Pr
(
F `(n,m(n)) is unsatisfiable

)
= Pr

(
UnSatn

∣∣ all the Cn,i are different
)
.

An application of the first moment method yields that for ` ≥ 3 a.a.s the number of

unordered pairs {i, j} such that Cn,i = Cn,j is equal to zero. In the case of ` = 2,

an application of the Moments Method (Theorem 1.4) proves that the number of such

pairs {i, j} converges in distribution to a Poisson variable. In either case all the Cn,i are

different with positive asymptotic probability. Thus the constants c1 and c2 from the

previous theorem satisfy our statement.

Let F `(n,m(n)) be as in last result. Note that because of the symmetry in the

random model F `(n, p(n)) one can consider F `(n,m(n)) to be a random sample of the

space F `(n, p(n)) given that the number of clauses is m(n). Using this observation we

can prove the following.

Theorem 2.11. Let ` > 1. Then there are real positive values β1 < β2 such that a.a.s

F `n(β) is satisfiable for 0 < β < β1 and a.a.s F `n(β) is unsatisfiable and for β > β2.

Proof. For each n ∈ N let Xn(β) be the random variable equal to the number of clauses in

F `n(β). We have that E[Xn(β)] ∼ β2`

`! n. Let c1, c2 be as in last corollary. Define β1 := c1l!
2`

and β2 := c2l!
2`

. Fix β ∈ R satisfying 0 < β < β1. Let ε > 0 be a real number such that
β2`

`! + ε < c1. For each n ∈ N set δ1(n) := b
(
β2`

`! − ε
)
nc and δ2(n) := b

(
β2`

`! + ε
)
nc.

Denote by dpn the probability density function of the variable Xn(β). That is

dpn(m) = Pr(Xn(β) = m). Then, because of the previous equation,

Pr
(
F `n(β) is unsatisfiable

)
∼
∫ δ2(n)

δ1(n)
Pr
(
F `n(β) is unsatisfiable

∣∣∣Xn(β) = m
)
dpn(m).
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Note that the property of being unsatisfiable is monotonous. As a consequence,∫ δ2(n)

δ1(n)
Pr
(
F `n(β) is unsatisfiable

∣∣∣Xn(β) = m
)
dpn(m) ≤

Pr
(
F `n(β) is unsatisfiable

∣∣∣Xn(β) = δ2(n)
)

Pr (δ1(n) ≤ Xn(β) ≤ δ2(n)) .

Because of the Law of large numbers,

lim
n→∞

Pr (δ1(n) ≤ Xn(β) ≤ δ2(n)) = 1.

As δ2(n) < c2n, because of the previous corollary

lim
n→∞

Pr
(
F `n(β) is unsatisfiable

∣∣∣Xn(β) = δ2(n)
)

= 0.

Combining the previous equations we obtain that for any β < β1 it holds that F `n(β)

a.a.s is satisfiable, as it was to be proven. Showing that for any β > β2, a.a.s F `n(β) is

unsatisfiable is analogous.

A direct consequence of the last theorem, due to A. Atserias (personal communica-

tion, July, 2019), is the following

Theorem 2.12. Let ` > 1 be a natural number. Let Φ ∈ FO[σ] be a first order sentence

that implies unsatisfiability. Then for all β > 0 a.a.s F `n(β) does not satisfy Φ.

Proof. Let β1 and β2 be as in Theorem 2.11. As Φ implies unsatisfiability Pr(F `n(β) |=
Φ) ≤ Pr(F `n(β) is unsatisfiable ). Thus, by Theorem 2.11, we get that for all β ∈ (0, β1]

lim
n→∞

Pr(F `n(β) |= Φ) = 0.

By Theorem 2.9, last limit varies analytically with β. It vanishes in the proper interval

(0, β1] then by the Principle of analytic continuation it has to vanish in the whole (0,∞),

and the result holds.
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Chapter 3

Sets of Limiting Probabilities

In the previous chapter we studied the convergence of probabilities related to FO prop-

erties. In this one, we work with models Gn where a FO convergence law is known to

hold and we study the set

L =
{

lim
n→∞

Pr(Gn |= ϕ) | ϕ FO sentence
}
.

When Gn satisfies a zero-one law, then L = {0, 1}. Otherwise, in general L is a countable

subset of [0, 1]. In this chapter we ask whether L is dense in [0, 1], and, more generally,

we study the topological properties of its closure L.

In [35] this question was considered in the context of monadic second-order (MSO)

logic and uniform relational structures. Given a signature σ containing at least one

relation with arity greater than one, they show that the uniform σ-structure on n vertices,

Gσn , does not satisfy a MSO convergence law. Even more, they show that any recursive

real c ∈ [0, 1] is the limit probability of some MSO property in Gσn . More recently, this

line of research was pursued in the context of the uniform graph GCn form an arbitrary

addable minor-closed class C in [31] and [39] independently. They show that a MSO

convergence law holds in GCn (the result in [39] applies to more general models), and

also study the set LC of limiting probabilities of MSO statements. In [39] is proven that

LC ⊆ [0, c]∪ [1− c, 1], where c is the asymptotic probability that GCn is not connected. In

[31], they study LC in greater detail and find, among other results, that that LC always

is a finite union of intervals. Furthermore, when C is the class of forests, then LC consists

of exactly four intervals, and when C is the class of planar graphs, the set LC contains

exactly 108 intervals. More generally, if all forbidden minors of C are 2-connected, LC is

always a finite union of at least two intervals.

Throughout this chapter we study the limit probabilities of FO statements in three

different random models: binomial random graphs G(n, p) with p ∼ c/n (Section 3.1),

binomial d-uniform hypergraphs Gd(n, p) with p ∼ c/nd−1 and d ≥ 3 (Section 3.2), and
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sparse graphs with given degree sequences (Section 3.1). Results about the binomial

graph and the binomial d-uniform hypergraph were obtained jointly with Marc Noy

and Tobias Müller, and later published in [42]. The work on graphs with given degree

sequences was done in collaboration with Marc Noy and Guillem Perarnau. A relevant

observation is that our results on random graphs with given degree sequences generalize

our previous results about G(n, p) presented in [42], and use more refined techniques.

However, for the sake of exposition, we present the work on G(n, p) with its original

arguments before moving on to the generalization.

3.1 Binomial Graphs

In this section we consider the classical binomial random graph model G(n, p) from the

point of view of FO logic. By Lynch’s results in [50], a FOg convergence law holds when

p ∼ c/n, and the limiting probability of any fixed sentence ϕ ∈ FOg depends only on c.

Throughout this section, let pϕ(c) = limn→∞ Pr(G(n, c/n) |= ϕ), and

Lc = {pϕ(c) | ϕ sentence in FOg}.

Similarly to our generalization in Chapter 2, Lynch also shows that each probability

pφ(c) is a smooth function of c (more concretely, pφ(c) is a combination of sums, products,

exponentials and a set of constants). This implies in a strong way that FO logic does

not capture the emergence of the giant component that occurs in G(n, c/n) at c = 1 [20]

(see also [61] for a discussion including monadic second order logic).

Our main result this section is that there is a transition in the structure of Lc at a

particular value of c. We say that Lc contains a gap if there is at least one subinterval

[a, b] ⊆ [0, 1] with a < b such that Lc ∩ [a, b] = ∅.

Theorem 3.1. Let Lc be the closure of the of limiting probabilities of first order sentences

in G(n, c/n). Let c0 ≈ 0.93 be the unique positive solution of

e
c
2

+ c2

4

√
1− c =

1

2
. (3.1)

Then for every c > 0 the set Lc is a finite union of closed intervals. Moreover, the

following holds:

1. Lc = [0, 1] for c ≥ c0.

2. Lc has at least one gap for 0 < c < c0.

This theorem follows from three intermediate results. First, Lc = [0, 1] for all c ≥ 1

(Lemma 3.8). Second, Lc is a finite union of intervals for all c < 1 (Lemma 3.11). Finally,
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Lc contains at least one gap for c < c0, and equals [0, 1] for c0 ≤ c < 1 (Lemma 3.12).

We give a brief outline of our techniques below.

In the regime c ≥ 1 we show that any probability q ∈ [0, 1] can be approximated using

statements of the form “There are at most k cycles of length bounded by `”. This follows

from the asymptotic cycle distribution in G(n, c/n), together with the fact that Poisson

distributions with large means can be approximated suitably by normal distributions. In

the sub-critical regime c < 1, we study the set Lc through the asymptotic distribution

of Fragn, the fragment of G(n, c/n). Given an unlabeled fragment H ∈ F, we define

pH = limn→∞ Pr(Fragn ' H). The value of pH is computed in Lemma 3.6. We show

that Lc coincides with the set of sums
∑

H∈T pH where T ⊆ F (Lemma 3.10). This way,

we can analyze Lc as the set of partial sums of a convergent series. The main tool in

this regard is the following classical result conjectured by Kakeya [33] and later proven

in [56].

Lemma 3.1 (Kakeya’s Criterion). Let
∑

n≥0 pn be a convergent series of non-negative

real numbers. Then the following are equivalent:

(1) pi ≤
∑

j>i pj for all i ≥ 0.

(2) {∑
i∈A

pi : A ⊂ N

}
=

0,
∑
n≥0

pn

 .
Moreover, if the condition pi ≤

∑
j>i pj holds for all values of i large enough, then the

set
{∑

i∈A pi : A ⊂ N
}

is a finite union of intervals.

In order to prove Lemmas 3.11 and 3.12, we consider the series of fragment prob-

abilities
∑

n≥0 pHi = 1, where pH0 ≥ pH1 ≥ . . . . Proving that Lc = [0, 1] amounts to

showing condition (1) above, and proving that Lc is a finite union of intervals is the

same as showing that (1) holds but only for sufficiently large i. Those proofs involve

finding good-enough lower bounds for the tails
∑

j>i pHj . In this section, as well as

in the next one, which extends these results to uniform hypergraphs, we showcase the

original method from [42]. This consists of using a specific family of fragments to bound∑
j>i pHj for sufficiently large i > i0 (for example, the family of triangles with two paths

attached to different vertices), and improving the bound for 1 ≤ i ≤ i0 by explicitly

enumerating the first few fragments with highest probabilities. The method used in

Section 3.3 for graphs with given degree sequences is slightly more refined and avoids

this explicit enumeration.

Something we do not study in detail is the way the number of gaps in Lc evolves as

c tends to zero from above. It can be shown that the number of gaps grows to infinity

as c → 0, and it would be interesting to determine the growth rate. However, this is a
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delicate issue, since the ordering of the fragment probabilities does not depend on c in

straightforward manner.

3.1.1 Cycles and Fragments

Here we present several results related to the fragment of G(n, c/n), and the number of

cycles in the random graph. We recall that by the fragment of a graph, we mean the

union of its unicyclic components. For the most part, results here are either well-known

or follow easily from existing ones. An exception is Lemma 3.6, which determines the

asymptotic distribution of G(n, c/n)’s fragment for c < 1.

For the rest of the section, let Xk(n) denote the number of k-cycles in G(n, c/n). It

is easy to show that

E[Xk(n)] ≤ ck

2k
,

and

lim
n→∞

E[Xk(n)] =
ck

2k
.

In particular, the functions k 7→ E [Xk(n)] form a tight sequence for n ∈ N.

The first part of the next lemma appears already in [20] for the uniform graph

G(n,M) on n vertices and M = M(n) edges, where M ∼ cn. The second part is easily

proved using the method of moments (Theorem 1.4).

Lemma 3.2. For fixed k ≥ 3, the number of k-cycles Xk(n) in G(n, c/n) is distributed

asymptotically as n→∞ as a Poisson law with parameter λk = ck

2k . Moreover, for fixed

k the random variables X3(n), . . . , Xk(n) are asymptotically independent.

We set

f(c) =
1

2
ln

1

1− c
− c

2
− c2

4
. (3.2)

This is a function defined on (0, 1) that plays an important role in our results. The

function is e−f(c) the limiting probability that G(n, c/n) is acyclic; see Figure 3.1 for a

plot.

Corollary 3.1. When c < 1 the expected number of cycles in G(n, c/n) is f(c).

Moreover, the limiting probability as n→∞ that G(n, c/n) contains no cycle is

e−f(c) = e
c
2

+ c2

4

√
1− c.

Proof. As the sequence (k 7→ E [Xk(n)])n∈N is tight,

lim
n→∞

E

∑
k≥3

Xk(n)

 =
∑
k≥3

ck

2k
= f(c).
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Figure 3.1: The probability that G(n, c/n) has no cycles as a function of c.

The second statement follows using this fact together with Lemma 3.2.

The following is a well-known fact about the sub-critical regime of G(n, c/n). See

[27, Lemma 2.10] for a proof.

Lemma 3.3. Let p(n) ∼ c/n with 0 < c < 1. Then a.a.s all the connected component

of G(n, p) are either trees or unicycles.

Let Fn be the set of unlabeled fragments containing n edges, i.e., {H ∈ F : |H| =

n}, and let F≤n =
⋃n
i=1 Fi. We write Fragn to denote the fragment of G(n, p). The

following result states that below the critical value c = 1 the expected size of Fragn is

asymptotically bounded.

Lemma 3.4. Let p(n) ∼ c/n with 0 < c < 1. Then limn→∞ E[|Fragn|] exists and is a

finite quantity.

Proof. This is done in [20, Theorem 5d] for the uniform model and in greater detail

in [27, Lemma 2.11] for the binomial model. For future reference we sketch the main

ingredients in the proof.

Let Yi(n) be the random variable equal to the number of unicyclic components in Gn
that contain exactly i edges. Then one proves that for k large enough and n ≥ 0

E[Yk(n)] ≤ (ce1−c)kec/2.

Furthermore, for all k ≥ 3

lim
n→∞

E [Yk(n)] = C(k, k)(ce−c)k,

where C(k, k) denotes the number of labeled unicyclic graphs on k vertices. In particular

the sequence of maps (k 7→ E [Yk(n)])n∈N is tight, so the statement follows.
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Because of Lemma 3.3, when 0 < c < 1 a.a.s. all cycles in G(n, c/n) are contained in

unicyclic components. Since the expected number f(c) of cycles in G(n, c/n) is asymp-

totically bounded we obtain the following.

Corollary 3.2. Let p(n) ∼ c/n with 0 < c < 1, and let Z(n) be the random variable

equal to the number of cycles in G(n, p) that belong to connected components that are not

trees or unicycles. Then

lim
n→∞

E[Z(n)] = 0.

Lemma 3.5. Let p(n) ∼ c/n with c > 0. Let T be a finite set of unlabeled unicycles.

For each H ∈ T let XH(n) be the random variable equal to the number of connected

components in G(n, p) isomorphic to H, and let λH = (e−cc)|H|

aut(H) . Then

lim
n→∞

Pr

( ∧
H∈T

XH(n) = aH

)
=
∏
H∈T

e−λH
λaHH
aH !

.

In other words, the XH(n) converge in distribution to independent Poisson variables with

respective means λH .

Proof. The proof is a slight modification of Theorem 4.8 in [10]. It follows from a

straightforward application of Theorem 1.4.

Asymptotic distribution of the fragment for c < 1 and its consequences

We compute below that the asymptotic probability that the fragment Fragn is isomorphic

to a given union H of unicycles. Recal that F is the class of unlabeled fragments.

Lemma 3.6. Let p(n) ∼ c/n with 0 < c < 1, and let H ∈ F. Then

lim
n→∞

Pr
(
Fragn ' H

)
= e−f(c) (e−cc)|H|

aut(H)
. (3.3)

Proof. Fix such an H. Let U1, U2, . . . , Ui, . . . be an enumeration of all unlabeled uni-

cycles ordered by non-decreasing size. For each i let ai be the number of connected

components of H that are copies of Ui, and let Wi(n) be the random variable equal to

the number of connected components in Gn that are isomorphic to Ui. Clearly Fragn ' H
if and only if Wi(n) = ai for all i. Thus,

lim
n→∞

Pr
(
Fragn ' H

)
= lim

n→∞
Pr
( ∞∧
i=1

Wi(n) = ai
)
.

The first observation is that

∞∏
k=i

e−λi
λaii
ai!

= e−f(c) (e−cc)|H|

aut(H)
, (3.4)
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where λi = (ce−c)|Ui|

aut(Ui)
is the asymptotic expected number of Hi copies in G(n, c/n)

(i.e., limn→∞ E [Wi(n)]). We prove this in the following. Let Xk(n) count the num-

ber of unicyclic components in G(n, c/n) containing exactly k edges. Observe that∑
k≥1 E [Xk(n)] =

∑
i≥1 E [Wi(n)] by definition of the variables Xk(n),Wi(n). Also,

each variable Xk(n) is the sum of only finitely many variables Wi(n), so∑
k≥1

lim
n→∞

E [Xk(n)] =
∑
i≥1

λi.

As seen in Lemma 3.4, the sequence (i 7→ E [Xi(n)])n≥1 of real maps over N is tight. By

Lemma 1.4 we can swap limit and sum in last equation to obtain

lim
n→∞

∑
k≥1

E [Xk(n)] =
∑
i≥1

λi.

Observe that
∑

k≥1Xk(n) counts the number of cycles in G(n, c/n) that belong to uni-

cyclic components. By Corollary 3.2, the expected number of cycles in G(n, c/n) outside

of unicyclic components is o(1) when 0 ≤ c < 1. Hence, it follows that
∑

i≥1 λi = f(c).

As a consequence,
∞∏
i=1

e−λi = e−f(c) = e−f(c).

Since
∑∞

i=1 |Ui|ai = |H| and
∏∞
i=1 aut(Ui)

aiai! = aut(H), we finally get

∞∏
i=1

λaii
ai!

=
(ce−c)|H|

aut(H)
,

and Equation (3.4) follows.

We proceed now with the second part of the proof. By last Lemma, for any j > 1

lim
n→∞

Pr
( j∧
i=1

Wi(n) = ai
)

=

j∏
i=1

e−λi .

Hence, using Equation (3.4), the theorem amounts to the fact that the following exchange

of limits can be performed

lim
n→∞

lim
j→∞

Pr
( j∧
i=1

Wi(n) = ai
)

= lim
j→∞

lim
n→∞

Pr
( j∧
i=1

Wi(n) = ai
)
.

This follows from the intersection bound, and the fact that Pr(
∧∞
i=jWi(n) = 0) tends

to one with j, uniformly in n. To see this, observe that for each ε > 0 there is some

j such that
∑

i≥j E [Wi(n)] < ε for all n, by the definition of tight sequence. Thus, by

Markov’s inequality, Pr(
∧∞
i=jWi(n) = 0) ≥ 1− ε.
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Given H ∈ F we define pH = pH(c) = limn→∞ Pr
(

Fragn ' H
)

. The following is a

direct consequence of the fact that the expected size of Fragn is bounded.

Lemma 3.7. Let p(n) ∼ c/n with 0 < c < 1, and let T ⊂ F. Then

lim
n→∞

Pr

( ∨
H∈T

Fragn ' H

)
=
∑
H∈T

pH .

In particular,
∑

H∈T pH = 1.

Proof. If T is finite then the statement is clearly true, since the events Fragn ' H are

disjoint for different H. Suppose otherwise. Let H1, . . . ,Hi, . . . be an enumeration of

T by non-decreasing size. Fix ε > 0. Let m = limn→∞ E
[
|Fragn|

]
, and let M = m/ε.

Then there exists j0 such that E(Hj) ≥M for all j ≥ j0. Using Markov’s inequality we

obtain that for any j ≥ j0

lim
n→∞

∣∣∣∣∣Pr

( ∨
H∈T

Fragn ' H

)
−

j∑
i=1

pHi

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣Pr

( ∨
H∈T

Fragn ' H

)
− Pr

(
j∑
i=1

Fragn ' H

)∣∣∣∣∣
≤ lim

n→∞
Pr
(
|Fragn| > M

)
≤ ε.

As our choice of ε was arbitrary this proves the statement.

3.1.2 No gap when c ≥ 1

Lemma 3.8. Let c ≥ 1. Then Lc = [0, 1].

Proof. As in the previous section, let Xk(n) be the number of cycles of length k in

G(n, c/n), which is asymptotically Po(ck/(2k)). Moreover, for fixed k, the random vari-

ables X3(n), . . . , Xk(n) are asymptotically independent by Lemma 3.2. Hence for fixed

k,

X≤k(n) = X3(n) + · · ·+Xk(n)
d−→ Po

(
k∑
i=3

ck

2k

)
.

Since c ≥ 1 the mean
∑k

i=3 c
k/2k is not bounded as k grows to infinity so we can pick k

such that this mean is as large as we like. Note that for any k and a the property that

X≤k ≤ a can be expressed in FO logic. By the central limit theorem we have

Pr(Po(µ) ≤ µ+ x
√
µ) −−−→

µ→∞
Φ(x)
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for any fixed x ∈ R, where Φ(x) = 1√
2π

∫ x
−∞ e

−t2/2dt is the cumulative distribution

function of the standard normal law.

For 0 < p < 1 and ε > 0 we can find x such that Φ(x) = p, a value µ0 such that

Pr(Po(µ) ≤ µ + x
√
µ) ∈ (p − ε, p + ε) for all µ ≥ µ0, and then finally a k such that∑k

i=3
ck

2k ≥ µ0. Hence there exists a FO property φ with limiting probability within ε of

p.

3.1.3 Always a finite union of intervals

It is shown in [50] that whether G(n, c/n) satisfies φ or not depends only a.a.s. on the

induced unicycles of diameter at most 3k, where k = qr(φ) (see Theorems 4.7, 4.8 and

4.9 in [50]). This, together with the fact that for c < 1 a.a.s. the connected components

of Gn are either trees or unicycles (Theorem 3.3), implies the following:

Lemma 3.9. Let p(n) ∼ c/n with 0 < c < 1. Let φ be a FO sentence and let H ∈ F.

Then

lim
n→∞

Pr
(
G(n, p) |= φ

∣∣Fragn ' H
)

= 0 or 1.

Moreover, the value of the limit depends only on φ and H, and not on c.

Given 0 < c < 1 and H ∈ F, we define pH(c) = limn→∞ Pr(Fragn ' H), where Fragn

stands for the fragment of G(n, c/n), as before. We define Sc as the set of partial sums

of
∑

H∈F pH(c),

Sc :=
{ ∑
H∈T

pH(c) : T ⊆ F
}
.

As outlined at the beginning of the section, when 0 < c < 1, we study the set Lc

through Kakeya’s criterion (Lemma 3.1), using the fact that Lc coincides with Sc. This

is proven below.

Lemma 3.10. Let 0 < c < 1. Then Lc = Sc.

Proof. We prove the result by showing both Lc ⊆ Sc and Lc ⊇ Sc.
(I) Lc ⊆ Sc: It is a known fact [33, 56] that Sc is closed and has no isolated points.

Thus, Sc = Sc, and it is sufficient to show Lc ⊆ Sc. Let φ ∈ FOg be a sentence. For

each H ∈ F define pφ,H(n) = Pr(G(n,d) |= φ | Fragn ' H)pH(n). By the law of total

probability it holds pφ = limn→∞
∑

H∈F pφ,H(n). As pφ,H(n) ≤ pH(n), the sequence

of real maps over F, (H 7→ pφ,H(n))n∈N is tight. For this reason, sum and limit can

be exchanged in the r.h.s. of last equation. Moreover, by lemma 3.9, we know that

limn→∞ Pr(G(n,d) |= φ | Fragn ' H) = 0 or 1. Let Fφ ⊆ F be the set of fragments

for which this limit equals 1. Notice that limn→∞ pφ,H(n) equals pH when H ∈ Fφ and

equals zero otherwise. With this, we obtain pφ =
∑

H∈U pH , showing that pφ ∈ Sc. This

proves the containment Lc ⊆ Sc.
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(II) Lc ⊇ Sc. Let U ⊆ F be an arbitrary family of fragments. We give a sequence

of FOg sentences φU ,k satisfying limk→∞ pφU,k =
∑

H∈U pH . For each H ∈ F, k ∈ N let

φH,k ∈ FOg be a sentence stating that the graph G contains an isolated copy of H, and

that no k-tuple of vertices outside this copy induce a cycle. Suppose that U is infinite. Let

(Ui)i∈N be a monotonically increasing chain of finite sets Ui ⊂ F satisfying
⋃
i∈N Ui = U .

Define φU ,k =
∨
H∈Uk φH,k. The union of disjoint events

(∨
H∈Uk Fragn ' H

)
implies

G(n,d) |= φU ,k. Let Ak(n) be the event that G(n,d) contains some cycle of size greater

than k Then, (G(n,d) |= φU ,k) ∧ ¬Ak(n) implies
(∨

H∈Uk Fragn ' H
)

as well. Thus,

|pφU,k(n)−
∑
H∈Uk

pH(n)| ≤ Pr(Ak(n)).

By Corollary 3.4, limk→∞ Pr(Ak(n)) = 0 uniformly for all n. As a consequence,

lim
k→∞

pφU,k − ∑
H∈Uk

pH

 = 0.

By the definition of infinite sum this proves limk→∞ pφU,k =
∑

H∈U pH , as we wanted to

show. The case were U is finite follows similarly, by defining φU ,k =
∨
H∈U φH,k. This

proves the containment Lc ⊇ Sc.

Lemma 3.11. Suppose 0 < c < 1. Then Lc is a finite union of intervals.

Proof. Let H1, . . . ,Hn, . . . be an enumeration of F such that pHi(c) ≤ pHj (c) for all

i ≤ j. We shorten pHi(c) to pi. Because of Lemma 3.1 proving that Lc is a finite union

of intervals amounts to showing that for all i large enough

pi ≤
∞∑
j>i

pj . (3.5)

Let f = f(c) be as defined in Equation (3.2), and let s = ce−c, and notice that as

c < 1 we have s < 1 as well. We can rewrite the pi given by Equation (3.3) as

pi = e−f
s|Hi|

aut(Hi)
.

For i ≥ 1 let k(i) be the least integer such that

e−fsk(i)−1 ≥ pi > e−fsk(i). (3.6)

Notice if k ≥ k(i) and Hj ∈ Fk then pj < e−fsk < pi because aut(Hj) ≥ 1. For the

same reason we also obtain that |Hi| ≤ k(i)− 1. Hence to prove (3.5) it is sufficient to
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show that

pi ≤
∑
k≥k(i)

∑
Hj∈Fk

pj . (3.7)

Let Cx,y denote the graph in F consisting of a cycle of length x with a path of length

y attached to one of its vertices. If y = 0 then aut(Cx,y) = 2x, and aut(Cx,y) = 2

otherwise. Let Tx,y,z be the graph consisting of a triangle with paths of length x, y,

and z attached to its three vertices. Note that aut(Tx,y,z) = 1 if x, y, z are distinct,

aut(Tx,y,z) = 6 if x = y = z, and aut(Tx,y,z) = 2 otherwise. It is easy to see that

C3,k−3, C4,k−4, . . . , Ck−1,1 together with T0,1,k−4, T0,2,k−5, . . . , T0,b(k−3)/2c,d(k−3)/2e form a

family of different elements of Fk. We have that for k ≥ 3

k−1∑
i=3

pCi,k−i = e−fsk
k − 3

2
.

If k is odd T0,b(k−3)/2c,d(k−3)/2e has two automorphisms, and the remaining Ti,k−3−i with

i ≥ 1 each have only one automorphism. If k is even then all of T0,1,k−4, T0,2,k−5, . . . , T0,b(k−3)/2c,d(k−3)/2e

have exactly one automorphism. This gives

b(k−3)/2c∑
i=1

pT0,i,k−3−i = e−fsk
k − 4

2
, for k ≥ 4 .

Using the last two equations it follows that for k ≥ 4

∑
H∈Fk

1

aut(H)
≥ e−fsk 2k − 7

2
. (3.8)

Hence if i is such that (2k(i)− 7)/2 > 1/s (that is, k(i) > 1/s+ 7/2) then

∑
j>i

pj ≥
∑

Hj∈Fk(i)

pj ≥ e−fsk(i) 2k − 7

2
> e−fsk(i)−1 ≥ pi.

Note that k(i) > 1/s+7/2 whenever |Hi|+1 ≥ 1/s+7/2, and this is true for sufficiently

large i. We have seen that, for any 0 < c < 1, it is indeed the case that pi <
∑

j>i pj for

all sufficiently large i, as was to be proved.

3.1.4 Transition at c0

Lemma 3.12. Let c0 be as defined in Equation (3.1). The following hold. (1) If 0 <

c < c0, then Lc has at least one gap, and (2) if c0 ≤ c < 1, then Lc = [0, 1].

Proof. We begin with (1). Let H be the empty fragment. Observe that pH(c) simply

equals the limit probability that G(n, c/n) is acyclic. By the definition of c0, it holds
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that pH(c) > 1/2 for all 0 < c < c0. In particular pH(c) >
∑

H′H pH′(c), so by Kakeya’s

criterion Lc contains at least one gap.

Now we move on to (2). Fix c ∈ [c0, 1). As before, H1, H2, . . . is an enumeration

of F satisfying pH1(c) ≤ pH2(c) ≤ . . . , and we shorten pHi(c) to pi. By Lemma 3.10

and Kakeya’s criterion, we just need to show that pi ≤
∑

j>i pj for all i. Observe that

s = ce−c satisfies
1

3
< s <

1

e
.

Given i ≥ 1, the value k(i) is defined as in Equation (3.6). Let i be such that k(i) ≥ 4.

Then, using (3.8) we obtain

∑
j>i

pj ≥
∑
k≥k(i)

∑
Hj∈Fk

pj ≥
∑
k≥k(i)

e−fsk
2k − 7

2
.

And using
∑∞

k=0 a
k(b+ ck) = b

1−a + ca
(1−a)2

together with s > 1/3 we obtain that

∑
j>i

pj ≥ e−fsk(i)

(
2k(i)− 7

2(1− s)
+

s

(1− s)2

)
≥ e−fsk(i) 3k(i)− 9

2
.

In particular, since 3k−9
2 ≥ 3 > 1/s for all k ≥ 5, if pi ≤ s4 then pi <

∑
j>i pj . As a

consequence, if |Hi| ≥ 4 then pi <
∑

j>i pj .

The only two cases left to consider are the ones when Hi is either the empty graph

or the triangle. If Hi is the empty graph then necessarily i = 1 because the empty graph

is the most likely fragment. By the definition of p0 critically we have p1 ≤ 1/2 if c ≥ c0,

hence p1 ≤
∑

j>1 pj . If Hi is the triangle graph, then pi = e−fs3/6 and

∑
j>i

pj =
∑
k≥4

∑
Hj∈Fk

pj ≥
∑
k≥4

e−fsk
2k − 7

2
≥ e−fs4 3

2
≥ e−fs3 1

6
= pi,

as needed. Thus pi ≤
∑

j>i pj for every i, as we needed to prove.

3.2 Binomial d-Uniform Hypergraphs

In this section we extend our previous result about G(n, p) to random sparse hypergraphs.

We consider the model Gd(n, p) of random d-uniform hypergraphs, where every d-edge

has probability p of being in Gd(n, p) independently. When p = c/nd−1 the expected

number of edges p
(
n
d

)
is linear in n, justifying the qualifier ‘sparse’. A phase transition

where a giant component emerges also occurs in Gd(n, c/nd−1) when c = (d − 2)! [60].

Throughout this section we consider d ≥ 3 as being fixed and we will refer to “d-uniform

hypergraphs” simply as hypergraphs. The FO language of d-uniform hypergraphs, de-

noted FOd
g, is analogous to the FO language of graphs, but the adjacency relation is
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d-ary instead of binary, as well as anti-reflexive and completely symmetric. The follow-

ing is an analog of Lynch’s convergence law for random hypergraphs and can be found

in [59, Proposition 6.4], or can be derived from the more general convergence law shown

in Chapter 2 and [41].

Theorem. Let p(n) ∼ c/nd−1. Then for each FOd
g sentence φ, the following limit exists:

pc(φ) = lim
n→∞

Pr
(
Gd(n, c/nd−1) |= φ

)
.

Moreover, pc(φ) is a combination of sums, products, exponentials and a set of constants

Λc, hence it is an analytic function of c.

As before we consider the set

Lc =
{

lim
n→∞

Pr(Gd(n, c/nd−1 |= φ) | φ FO sentence
}
.

The main result of this section reads as follows.

Theorem 3.2. Let d ≥ 3 be fixed and let Lc be the closure of the of limiting probabilities

of first order sentences in Gd(n, c/nd−1). Let c0 be the unique positive solution of

exp

(
c

2(d− 2)!

)√
1− c

2(d− 2)!
=

1

2
. (3.9)

Then for every c > 0 the set Lc is a finite union of intervals. Moreover, the following

holds:

1. Lc = [0, 1] for c ≥ c0.

2. Lc has at least one gap for 0 < c < c0.

We remark that c0 = r(d−2)!, where r ≈ 0.898 is the positive solution of exp(r/2)
√

(1−
r) = 1/2. The difference between Equations Equation (3.1) and Equation (3.9) results

from the fact that cycles have length at least 3 in the setting of graphs, whereas in the

case of hypergraphs 2-cycles do exist.

The strategy for proving the main theorem completely mirrors that of the previous

section. Theorem 3.2 follows from three intermediate results. First, we show that

Lc = [0, 1] when c ≥ (d − 2)! (Lemma 3.19). Then, we show that Lc consists of a

finite union of intervals for all 0 < c < (d − 2)! (Lemma 3.22). Finally, we prove that

Lc contains at least one gap 0 < c < c0, and Lc = [0, 1] for all c0 ≤ c < (d − 2)!

(Lemma 3.23). As in the section before, we establish that Lc equals the set of partial

sums of fragment probabilities for 0 < c < (d− 2)!, and use Kakeya’s criterion to study

this set.
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3.2.1 Cycles and Fragments

Recall the definitions introduced in Section 1.2 of cycle, tree, unicycle, fragment and so

on in the context of d-uniform hypergraphs. For convenience we set Gdn = Gdn(n, c/nd−1)

when c is understood from context or is not relevant.

It was proven in [60] that a phase transition in the structure of Gdn occurs when

c = (d− 2)!, similar to the one for random graphs. In particular, we have the following

results [60, Theorem 3.6].

Lemma 3.13. Let p(n) ∼ c/nd−1 with 0 < c < (d − 2)!. Then a.a.s. all connected

components of Gdn are either trees or unicycles.

The proofs of the next results are very similar to those for graphs presented in Section

3.1.1 and are omitted.

Lemma 3.14. Let p ∼ c/nd−1 with c > 0. For each k ≥ 2, let Xk(n) be the random

variable equal to the number of k-cycles in Gdn, and let λk =
(

c
(d−2)!

)k
. Then for fixed

k ≥ 2

(1) E
[
Xk(n)

]
≤ λk,

(2) limn→∞ E
[
Xk(n)

]
= λk,

(3) Xk(n) converges in distribution to a Poisson variable with mean λk as n→∞.

Furthermore, for any fixed k ≥ 2 the variables X2(n), . . . , Xk(n) are asymptotically

independent.

Corollary 3.3. Let p ∼ c/nd−1 with c > 0. Set

f(c) =
∑
k≥2

(
c

(d− 2)!

)k 1

2k
=

1

2
ln

1

1− c
(d−2)!

− c

2(d− 2)!
. (3.10)

Let Xn be the random variable equal to the total number of cycles in Gdn. Then

lim
n→∞

E[Xn] = f(c),

and

lim
n→∞

Pr
(
Gdn contains no cycles

)
= e−f(c) = exp

(
c

2(d− 2)!

)√
1− c

2(d− 2)!
.

Lemma 3.15. Let p ∼ c/nd−1 with 0 < c < (d − 2)!. Let Zn be the random variable

equal to the number of cycles in Gdn that belong to connected components that are not

unicycles. Then

lim
n→∞

E[Zn] = 0.
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Let U be the family of unlabeled d-hypergraphs whose connected components are

unicyclic.

Lemma 3.16. Let p ∼ c/nd−1 with c > 0. Let T ⊂ U be a finite set of unicycles. For

each H ∈ T let Xn,H be the random variable that counts the connected components in

Gdn that are isomorphic to H, and set

λH =

(
ce−c/(d−2)!

)|H|
aut(H)

.

Then Xn,H converges in distribution to a Poisson variable with mean λH as n→∞ and

the Xn,H are asymptotically independent, that is

lim
n→∞

Pr

( ∧
H∈T

Xn,H = aH

)
=
∏
H∈T

e−λH
λaHH
aH !

.

Similarly to the previous section, we write Fragn for the fragment of the random

hypergraph Gdn.

Lemma 3.17. Let p ∼ c/nd−1 with 0 < c < (d− 2)!. Then the limit

lim
n→∞

E
[
|Fragn|

]
exists and is a finite quantity.

The same proof of Lemma 3.6 can be used to prove the following result. Remember

that Fd stands for the class of all unlabeled fragments.

Theorem 3.3. Let p(n) ∼ c/nd−1 with 0 < c < (d− 2)!. Let H ∈ Fd. Then

lim
n→∞

Pr
(
Fragn ' H

)
= e−f(c)

(
e−c/(d−2)!c

)|H|
aut(H)

.

A lower bound on the number of automorphisms of unicyclic hyper-

graphs

Let H be an hypergraph and h ∈ E(H) an edge. We call a vertex v lying in e free if e

is the only edge that contains v. We denote by free(h) the number of free vertices in e.

Notice that

aut(H) ≥
∏

h∈E(H)

free(h)!,

because free vertices inside an edge can be permuted without restriction. Given a uni-

cycle H we define the leaves of H as the edges e ∈ E(H) that contain only one non-free

vertex.
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Lemma 3.18. Let H be a fragment. Then,

(d− 2)!|H|

aut(H)
≤ (d− 2)2

(d− 1)2
.

Proof. It suffices to prove the statement for unicycles, because

(d− 2)!|H|

aut(H)
≤
∏
i

(d− 2)!|Hi|

aut(Hi)
,

where the Hi are the connected components of H.

Let λ be the number of leaves in H. We show by induction that

∏
h∈E(H)

(d− 2)!

free(h)!
≤
(
d− 2

d− 1

)λ
. (3.11)

If λ = 0 then H is a cycle and each of its edges contains exactly d − 2 free vertices, so

that ∏
h∈E(H)

(d− 2)!

free(h)!
= 1,

and H satisfies (3.11). Now let H be a unicycle satisfying (3.11). Add a new edge h′ to

H to obtain another unicycle H ′. Since h′ intersects H in only one vertex v, it follows

that h′ is a leaf of H ′. There are two possibilities:

• λ(H ′) = λ(H). In this case no new leaves are created with the addition of h′. This

means that v is a free vertex in one leaf g of H (that is, h′ “grows” out of g), and

∏
h∈E(H′)

(d− 2)!

free(h)!
=

∏
h∈E(H)

(d− 2)!

free(h)!
.

• λ(H ′) = λ(H) + 1. In this case h′ intersects an edge of H that is not a leaf. The case

that maximizes
∏
h∈E(H′)

(d−2)!
free(h)! is when h′ grows out of a free vertex of an edge in H

with exactly d− 2 free vertices. In this case

∏
h∈E(H′)

(d− 2)!

free(h)!
=
d− 2

d− 1

∏
h∈E(H)

(d− 2)!

free(h)!
,

and H ′ satisfies (3.11) as well.

Finally, as all unicycles can be obtained adding edges to a cycle successively, (3.11) holds

for all unicycles.

To prove the original statement consider the cases λ = 0, λ = 1 and λ ≥ 2.
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• If λ = 0 then H is a cycle of length l ≥ 2 and aut(H) = (d− 2)!l2l, yielding

(d− 2)!|H|

aut(H)
=

1

2l
≤ (d− 2)2

(d− 1)2
,

since 1/2l ≤ 1/4 ≤ (d− 2)2/(d− 1)2 for all l ≥ 2, d ≥ 3.

• If λ = 1 then H is a cycle with a path attached to it. In this case, H has a non-trivial

automorphism (a reflection of the cycle) and as a consequence 2
∏
h∈E(H) free(h)! ≤

aut(H). Using this and (3.11) we get

(d− 2)!|H|

aut(H)
≤ 1

2

∏
h∈E(H)

(d− 2)!

free(h)!
≤ 1

2

(
d− 2

d− 1

)
≤
(
d− 2

d− 1

)2

,

as we wanted.

• Finally, when λ ≥ 2 the relation (3.11) suffices, since

∏
h∈E(H)

(d− 2)!

free(h)!
≤
(
d− 2

d− 1

)λ
≤
(
d− 2

d− 1

)2

.

3.2.2 No gap when c ≥ (d− 2)!

Lemma 3.19. Suppose that c ≥ (d− 2)!. Then Lc = [0, 1].

Proof. The arguments here mirror exactly those in Section 3.1.2. For each k let Xk(n)

be the random variable equal to the number of k-cycles in Gdn. Then

X≤k(n) = X2(n) + · · ·+Xk(n)
d−−−→

n→∞
Po

(
k∑
i=2

(c/(d− 2)!)k

2k

)
.

If c ≥ (d − 2)! then
∑k

i=2
(c/(d−2)!)k

2k tends to infinity and we can use the Central Limit

Theorem to approximate any p ∈ (0, 1) with FO statements of the form “X≤k(n) ≤
a”.

3.2.3 Always a finite union of intervals

As with the case of graphs, the following is an implicit consequence of the FO-convergence

law on Gd(n,d).

Lemma 3.20. Let p ∼ c/nd−1 with 0 < c < (d − 2)!. Let φ be a FO sentence and let

H ∈ Fd. Then

lim
n→∞

Pr
(
Gdn |= φ

∣∣∣Fragn ' H
)

= 0 or 1.
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Moreover, the value of the limit depends only on φ and H, and not on c.

For each H ∈ Fd define pH(c) = pH = limn→∞ Pr
(

Fragn ' H
)

. Consider the set

Sc =

{∑
H∈T

pH(c) : T ⊆ Fd
}
.

One can proceed exactly as in Lemma 3.10 to prove the following:

Lemma 3.21. Let 0 < c < (d− 2)!. Then Lc = Sc.

Before moving on to the main lemma of this subsection, we need to introduce three

families of hypergraphs having a small number of automorphisms. Those will play a

similar role in our proofs to the one played by the special unicyclic graphs in Section 3.1.3.

• Let Tα,β denote the hypergraph consisting of a triangle (as a d-hypergraph) with two

paths of length α and β respectively attached to two of its free vertices, each one from

a different edge. One can check that

(d− 2)!|Tα,β |

aut(Tα,β)
=

(d− 2)!α+β+3

aut(Tα,β)
=


(
d−2
d−1

)2
for α 6= β,

1
2

(
d−2
d−1

)2
otherwise.

Let T be the family of hypergraphs {Tα,β : α, β > 0}. Then for k ≥ 4

∑
H∈T , |H|=k

(d− 2)!|H|

aut(H)
=

b k−3
2
c∑

α=1

(d− 2)!k

aut(Tα,k−3−α)
=
k − 4

2

(
d− 2

d− 1

)2

. (3.12)

• Let Bα,β denote the hypergraph consisting of a two-cycle with two paths of length α

and β respectively attached to two of its free vertices, each one from a different edge.

In this case

(d− 2)!|Bα,β |

aut(Bα,β)
=

(d− 2)!α+β+2

aut(Bα,β)
=


1
2

(
d−2
d−1

)2
for α 6= β,

1
4

(
d−2
d−1

)2
otherwise.

Let B = {Bα,β : α, β > 0}. Then for k ≥ 3

∑
H∈B,|H|=k

(d− 2)!|H|

aut(H)
=

b k−2
2
c∑

α=1

(d− 2)!k

aut(Bα,k−2−α)
=
k − 3

4

(
d− 2

d− 1

)2

. (3.13)
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• We denote by Oα,β, the hypergraph formed by attaching a path of length β to a

free vertex of a cycle of length α. One can check that |Oα,β| = α + β and that
(d−2)!α+β

aut(Oα,β)| = 1
2

(
d−2
d−1

)
.

Let O = {Oα,β : α > 1, β > 0}. Then for k ≥ 2

∑
H∈O,|H|=k

(d− 2)!|H|

aut(H)
=

k−1∑
α=2

(d− 2)!k

aut(Oα,k−α)
=
k − 2

2

(
d− 2

d− 1

)
. (3.14)

Now we are in conditions of proving the main lemma of the subsection.

Lemma 3.22. Suppose 0 < c < (d− 2). Then Lc has a finite number of gaps.

Proof. Let H1, . . . ,Hn, . . . be an enumeration of Fd such that pHi ≤ pHj for all i ≤ j.

As before we shorten pHi to pi. Analogously to 3.1.3 we need to prove that for i large

enough

pi ≤
∑
j>i

pj .

Let f = f(c) be as defined in Equation (3.10), and let s = c
(d−2)!e

−c/(d−2)!. Because of

Theorem 3.3 we have that

pi = e−fs|Hi|
(d− 2)!|Hi|

aut(Hi)
. (3.15)

For i > 0 we define k(i) as the unique integer such that

e−fsk(i)−1

(
d− 2

d− 1

)2

≥ pi > e−fsk(i)

(
d− 2

d− 1

)2

Notice that because of Lemma, (3.18), we have |Hi| ≤ k(i)− 1.

As a consequence, if k = k(i) ≥ 4 then

∑
j>i

pi ≥ sk
∑
H∈Uk

(d− 2)!k

aut(H)

≥ sk k − 4

2

(
d− 2

d− 1

)2

.

This is obtained taking into account only the hypergraphs in T and using Equation (3.12).

The last inequality implies that if k(i) is such that 1
s ≤

k(i)−4
2 then pi ≤

∑
j>i pj . This

clearly holds for i large enough, hence Lc is a finite union of intervals, as needed to be

proved.

3.2.4 Transition at c0

Lemma 3.23. Let c0 be as defined in Equation (3.9). The following hold: (1) If 0 <

c < c0, then Lc has at least one gap, and (2) if c0 ≤ c < (d− 2)!, then Lc = [0, 1].
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Proof. Statement (1) is proven exactly as in Lemma 3.12. We show (2) below.

Fix c0 ≤ c < (d − 2)!. Let H1, . . . ,Hn, . . . be an enumeration of Fd satisfying the

same conditions as before, and let pi = pHi(c). Our goal is showing that for all i

pi ≤
∑
j>i

pj . (3.16)

If this holds, statement (2) follows from Kakeya’s Criterion and Lemma 3.21.

Notice that s = c
(d−2)!e

−c/(d−2)! satisfies that

1

3
< s <

1

e
,

because 0.898 ≤ c/(d − 2)! < 1. The following inequalities are obtained using Equa-

tions (3.12) to (3.14) respectively, together with the formula for the sum of an arithmetic-

geometric series and the fact that 1/3 < s.

∑
H∈T ,|H|≥k

pH ≥ e−fsk
6k − 21

8

(
d− 1

d− 2

)2

for k ≥ 4. (3.17)

∑
H∈B,|H|≥k

pH ≥ e−fsk
6k − 15

16

(
d− 1

d− 2

)2

for k ≥ 3. (3.18)

∑
H∈O,|H|≥k

pH ≥ e−fsk
6k − 9

8

(
d− 1

d− 2

)
for k ≥ 2. (3.19)

Assume first that k = k(i) ≥ 5. Then

∑
j>i

pj ≥ e−fsk
[

18k − 57

16

(
d− 2

d− 1

)2

+
6k − 9

8

(
d− 2

d− 1

)]

≥ e−fsk 30k − 75

16

(
d− 2

d− 1

)2

≥ e−fsk3
(
d− 2

d− 1

)2

≥ e−fsk−1

(
d− 2

d− 1

)2

≥ pi,

as was to be proven.

Otherwise, suppose that k = k(i) ≤ 4. Notice that because of Lemma 3.18 necessarily

|Hi| ≤ 3. We have three cases:

• |Hi| = 3. In this case, the following enumeration of all (unlabeled) unicycles of size 3

gives that

e−fs3 1

2

(
d− 1

d− 2

)
≥ pi.
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(a) (d−2)!3

aut(H) = 1
2

(
d−1
d−2

)
. (b) (d−2)!3

aut(H) = 1
2

(
1
d−2

)
.

(c) (d−2)!3

aut(H) = 1
6 .

Proceeding as before we obtain

∑
j>i

pj ≥ e−fs4

[
184− 57

16

(
d− 2

d− 1

)2

+
64− 9

8

(
d− 2

d− 1

)]

≥ e−fs4

[
15

16

1

2

(
d− 2

d− 1

)
+

30

8

1

2

(
d− 2

d− 1

)]
≥ e−fs4 3

2

(
d− 2

d− 1

)
≥ e−fs3 1

2

(
d− 2

d− 1

)
≥ pi.

• |Hi| = 2. In this case Hi is the 2-cycle, and pi = e−fs2 1
4 . Using Equations (3.18)

and (3.19) we obtain∑
j>i

pj ≥ pC3 +
∑
H∈B

pH +
∑
H∈O

pH

≥ e−fs3

[
1

6
+

3

16

(
d− 2

d− 1

)2

+
9

8

(
d− 2

d− 1

)]

≥ e−fs3

[
4

6

1

4
+

3

16

1

4
+

18

8

1

4

]
≥ e−fs33

1

4
≥ pi.

• |Hi| = 0. In this case Hi is the empty graph and pi ≥ 1/2 by hypothesis.

3.3 Graphs with Given Degree Sequences

In this section we study the set of limit probabilities corresponding to FOg sentences

in the context of sparse graphs with given degree sequences. This random model is

significantly more complex than the binomial random graph G(n, p), but we are able to

prove an analogous result to Theorem 3.1. Roughly, the main theorem of this section

states that the set of limit probabilities of interest is dense in [0, 1] when the likelihood

that the random graph is acyclic is at most 1/2. Otherwise, this set is dense in a finite

union of intervals, and has at least one gap.

Before giving a precise statement of this section’s main theorem we need to properly

introduce random graphs with given degree sequences. A degree sequence on n
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vertices is a sequence d = (di)i∈[n] where di is a non-negative integer with di < n for

all i ∈ [n] and
∑

i∈[n] di is even. We call d feasible, if there is some graph G with

V (G) = [n] whose degree sequence is d, meaning that deg v = dv for all v ∈ [n]. Given a

feasible degree sequence d on n vertices, G(n,d) denotes the uniform graph with vertex

set [n] and whose degree sequence is d.

We are interested in the asymptotic study of random graphs. For this reason, rather

than working with a single degree sequence, we need to consider a family of them, con-

taining one for each number of vertices. An asymptotic degree sequence (shortened

to a.d.s.) is a family d = (d(n))n∈N where d(n) = (di(n))i∈[n] is a degree sequence

on n vertices. By convention, we set di(n) = 0 for each i > n. Given n, we define

nk(n) = {i ∈ [n] | di(n) = k}. We drop the argument n when the dependency is clear

from context in order to keep the notation light.

Our objects of study are sparse random graphs, meaning that we want to choose d so

that the expected number of edges in G(n,d) is linear. Additionally, in order to study the

G(n,d) from the perspective of FO logic, we need to impose some regularity conditions on

d. Those conditions are better stated in terms of the degree distributions corresponding

to d. Given n ∈ N, the degree distribution Dd(n) is given by Pr(Dd(n) = k) = ni/n.

Equivalently, Dd(n) is the probability distribution of the degree of a uniform random

vertex in G(n,d). We simply write D(n) instead of Dd(n) when d is clear from the

context.

Definition 3.1. An a.d.s. d = (d(n))n∈N is called well behaved (w.b.) if the following

are satisfied:

WB1: d(n) is feasible for all n.

WB2: D(n)
d−→ D for some random variable D = Dd.

WB3: limn→∞ E [D(n)] (resp., limn→∞ E
[
D(n)2

]
), exists, is bounded and equal

to E [D] (resp., E
[
D2
]
).

WB4: Whenever Pr(D = k) = 0 for some k, Pr(D(n) = k) = 0 for all n (or

equivalently, nk = 0 for all n).

Condition WB1 is required so that G(n,d) is well-defined. Conditions WB2 and

WB3 allow us to study G(n,d) by looking at the limit degree distribution D. More

concretely, WB3 guarantees that the proportion of edges incident to vertices with very

large degrees is small. In particular, E
[
D2
]

being finite and equal to limn→∞ E
[
D2(n)

]
implies that the maximum degree ∆(n) in d(n) satisfies ∆(n) = o(

√
n2). Finally, WB4

rules out the existence of vertices with “rare degrees”. Otherwise such rare-degree ver-

tices would pose an obstacle to a FOg-convergence in G(n,d). For example, consider a

situation where d(n) contains a single degree 3-vertex for odd n, and none for even n.

We remark that for our purposes, condition WB4 could be weakened replacing “for all

n” by “for all sufficiently large n”. However, we use the stronger version for convenience.
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Before moving on, we introduce some additional notation. All of the following defi-

nitions are in terms of some well-behaved a.d.s. d. We define λi = Pr(D = i), where D

is the limiting degree distribution corresponding to d, as defined at the beginning of the

section. Given n ∈ N, we write mn to the twice the number of edges given by d(n). That

is, mn =
∑

i∈[n] di(n). Lastly, ρk(n) stands for the k-th factorial moment E [(D(n))k],

and for k = 1, 2 we put ρk for E [(D)k], which coincides with limn→∞ ρk(n) by the defi-

nition of well-behavedness. The parameter ν = νd is defined as E [D(D − 1)] /E [D]. It

is well-known that ν is responsible for the apparition of a giant component in G(n,d).

Under similar conditions to ours, [54] shows that G(n,d) a.a.s. contains a component of

linear size if and only if ν > 1 Finally, for all n ∈ N, ν(n) refers to ρ2(n)/ρ1(n). Observe

that by the definition of well-behavedness ν(n) converges to ν as n grows to infinity.

As with the previous section during this chapter, our starting point here is the fact

that a FOg-convergence law holds in G(n,d).

Theorem 3.4 (Lynch, [46, 47]). Let d be a well-behaved a.d.s. Then a FOg-convergence

law holds in G(n,d).

If one inspects the sources [46, 47], they will find that in each of the papers different

conditions are imposed on d, and that those conditions are not comparable (that is,

neither weaker nor stronger) to our definition of well-behavedness (Definition 3.1). In

fact, due to some minor oversights the conditions from neither work [46, 47] are sufficient

to deduce a convergence law in G(n,d) using their tools. The reason is that those works

obtain results on a related multigraph model, called the configuration model, and rely

on arguments lemmas that link event probabilities in the configuration model to event

probabilities in G(n,d). However, those arguments require the second moment of D(n)

(the degree distribution given by d(n)) to converge to a finite quantity, and this is not

guaranteed in the papers. We remark this does not mean that the convergence law

does not hold under the conditions of [46, 47], but simply that their particular proof

methods require stronger assumptions. Further discussion on this topic can be found in

Section 3.3.5. However, when d is well-behaved according to our definition E
[
D(n)2

]
has a finite limit and the techniques introduced in [46, 47] yield a FOg-convergence law.

Throughout this section, we deal with a well-behaved a.d.s. d and we set

pϕ(d) = lim
n→∞

Pr(G(n,d) |= ϕ),

where ϕ is a FOg-sentence. Similarly to the sections before, we study the set

Ld = {pϕ(d) | ϕ sentence in FOg}.

Surprisingly, it turns out that ν is the only parameter determining whether Ld is

dense in the whole interval [0, 1]. Our main result this section is the following.
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Theorem 3.5. Let d be a well-behaved a.d.s. and let ν0 be the only solution in [0, 1] of

e
ν
2

+ c2

4

√
1− ν = 1/2. (3.20)

It holds that Ld is a finite union of closed intervals. Moreover,

1. Ld = [0, 1] if ν ≥ ν0.

2. Ld has at least one gap if 1 < ν < ν0.

The same strategy as in the previous sections works for proving this theorem, al-

though the probabilistic arguments are more involved. Theorem 3.5 follows from three

intermediate results: Ld = [0, 1] when ν ≥ 1 (Theorem 3.9), Ld consists of a finite union

of intervals when 0 < ν < 1 (Lemma 3.30), and Ld contains at least one gap when

0 < ν < ν0, whereas Lν = [0, 1] for all ν0 ≤ ν < 1 (Lemma 3.23). In the sub-critical

region 0 < ν < 1 we also establish that Ld equals the set of partial sums of fragment

probabilities (Theorem 3.11), and use Kakeya’s Criterion to deduce the lemmas of in-

terest. However, this time fragment probabilities have a more complex structure that

depends heavily on the a.d.s. d. For example, d may not contain vertices of degree 3,

limiting the possibilities for G(n,d)’s fragment. We overcome this difficulty, roughly, by

separating fragments into different blocks depending on the amount of cycles of each

length they contain, and using those blocks for our bounds, instead of using individual

fragments as in the previous sections.

3.3.1 Configuration Model, Cycles and Fragments

In this section we introduce the probabilistic results required for studying Ld. Compared

to previous sections, we do this in greater detail here, as the computations are more

involved and, to the best of our knowledge, there is not a proper account in the literature

for some of the results we cover.

Configuration Model

It turns out that G(n,d) is not an easy model to deal with. It is not clear how to

produce a multigraph with the desired degree sequence uniformly at random. However,

if we settle for multigraphs (that is, we allow double edges, and edges with both ends at

the same vertex, called loops), the problem becomes easier. Given a degree sequence d

on n vertices, we attach dv half edges to each vertex v ∈ [n]. Afterwards, any matching

of half edges produces a multigraph with the desired degree sequence. This is the so-

called configuration model [9, 10], which we introduce in greater detail below. This

model does not yield a uniform multigraph with degree sequence d, but assigns the same

probability to each graph (i.e., multigraph with no double edges nor loops). In other
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words, conditioning CM(n,d) to the event of being simple yields the same distribution

as G(n,d). Hence, studying the configuration model is a good strategy for dealing with

the later random graph.

Multigraphs are generalizations of graphs where multiple edges between the same

vertices are allowed, as well as edges joining a vertex to itself. In addition to that, we

consider multigraphs where each edge has its own identity. Formally, a multigraph G

is a triple (V (G), E(G), rG) where V (G) is its vertex set, and E(G) its edge set, and

rG : E(G) → {{u, v} | v, u ∈ V (G)} is a map assigning each edge e to an unordered

pair of vertices {u, v}, which represent its endpoints. We allow the possibility that

u = v, in which case {u, v} is a singleton rather than a pair, and e is called a loop.

Given u, v ∈ V (G), the multiplicity of {u, v} in E(G) is just the size of r−1
G ({u, v}). The

degree deg(v) of a vertex v ∈ V (G) is the number of edges e ∈ E(G) with rG(e) = {v, u}
for some u 6= v, plus twice the number of loops e ∈ E(G) with rG(e) = {v}. A graph

G = (V (G), E(G)) has a natural representation as a multigraph, just by setting rG

the identity map on E(G). Given a multigraph G, a sub-multigraph H is just a

multigraph where V (H) ⊆ V (G), E(H) ⊆ E(V ), and rH is rG restricted to E(G). An

isomorphism between two multigraphs G,H is a bijection f : V (G) → V (H) where

the multiplicity of {u, v} in G is the same as the multiplicity of {f(u), f(v)} in H, for

all u, v ∈ V (G). Given a multigraph G, its number of half-edge automorphisms

auth.e.(G) is aut(G)2`
∏
u,v∈V (G)m(u, v)!, where ` is the number of loops in G, and given

(non-necessarily different) vertices u, v ∈ V (G), m({u, v}) denotes the multiplicity of

{u, v} in G. Informally, auth.e.(G) is the number of half-edge permutations in G that

preserve incidence to the same vertex and the matching between half-edges. As with the

case of graphs, if G,H are multigraphs, an H-copy in G is just a sub-multigraph H ′ ⊆ G
that is isomorphic to G. Other notions related to graphs (Section 1.2) are extended to

multigraphs in the intuitive way. Importantly, we define the excess of a multigraph G

to be the number ex(G) = |E(G)|− |V (G)|. For convenience, throughout this section we

attempt to treat multigraphs just as if they were normal graphs. Among other things,

we omit the maps rG whenever possible.

The random configuration CM(n,d), is a uniform random matching of [m] (for-

mally, CM(n,d) ⊆
(

[m]
2

)
), where m =

∑
i∈[n] di. We refer to the elements e ∈ [m]

as half-edges. We say that a half-edge e ∈ [m] belongs to a vertex v ∈ [n] if∑
u<v du < e ≤

∑
u≤v du. In other words, the first d0 half-edges belong to vertex

0, the following d1 belong to vertex 1, and so on. The underlying multigraph of

CM(n,d) has vertex set [n], its edge set consists of the pairs {h1, h2} in the matching

CM(n,d), and the endpoints of an edge {h1, h2} ∈ CM are defined as {v1, v2} where

the half-edges h1 and h2 belong to v1 and v2. In the following, we identify CM(n,d)

with its underlying multigraph.

The model CM(n,d) assigns a probability to each multigraph G whose degree se-
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quence is d that depends only on its number of loops and its number of edges with

multiplicity greater than one. In particular, when d is feasible, it holds that condition-

ing CM(n,d) on the absence of loops and multiple edges results in the same distribution

as G(n,d) as CM(n,d) [10].

Cycle Distributions

Lemma 3.24. Let H be a fixed multigraph, where h = |V (H)|, hi = |{v ∈ V (H) |
deg(v) = i}, and ` = |E(H)|. Let XH(n) be the number of H-copies in CM(n,d). Then

Ξ(H,n)(1−O(1/n)) ≤ E [XH(n)] ≤ Ξ(H,n), where

Ξ(H,n) =
nh

auth.e.(H)
∏`
i=1(mn − 2i+ 1)

∏
i≥0

ρi(n)hi .

Proof. Let H ′ be a possible sub-configuration of CM(n,d) isomorphic to H. Then the

probability that H ′ ⊆ CM(n,d) is exactly

∏̀
i=1

1

(mn − 2i+ 1)
,

which is obtained by dividing the number of configurations containing H ′ by the total

number of matchings of [mn]. Both bounds in our statement result from estimating the

number of possible sub-configurations H ′ isomorphic to H. Fix a labelling v1, . . . , vh of

V (H). In order to choose H ′, we begin by picking the vertices V (H ′), v′1, . . . , v
′
h each

one labeled after a vertex in H. In order to completely determine H ′, we need to pick

a list of deg(vi) half-edges incident to v′i for each 1 ≤ i ≤ h. This yields a total of∏
1≤i≤h(ai)bi choices of half-edges for H ′, where ai = dv′i(n) and bi = deg(vi). Note that

this is 0 unless dv′i(n) ≥ deg(vi) There are exactly auth.e.(H) ways of choosing vertices

and half-edges that yield the same sub-configuration H ′. Hence, the total number of

possible sub-configurations of CM(n,d) isomorphic to H is given by

1

auth.e.(H)

∑
a1,...ah∈N

∑
{v′1,...,v′h}∈(

[n]
h )

dv′
i
(n)=ai, for all 1≤i≤h

∏
1≤i≤h

(ai)deg(vi).

In this sum, we first pick the degrees a1, . . . , ah of v′1, . . . , v
′
h before choosing the vertices

themselves. Once a1, . . . , ah are fixed, for each i there are at most nai choices for v′i

(corresponding to the case where each ai is different) and at least nai −h+ 1 choices for
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this vertex (when all ai are the same). In this way,

E [XH(n)] ≤ 1

auth.e.(H)
∏`
i=1(mn − 2i+ 1)

∑
a1,...,ah∈N

 ∏
1≤i≤h

(ai)deg(vi) nai


=

nh

auth.e.(H)
∏`
i=1(mn − 2i+ 1)

∏
1≤i≤h

(∑
a∈N

nai
n

(ai)deg(vi)

)

=
nh

auth.e.(H)
∏`
i=1(mn − 2i+ 1)

∏
1≤i≤h

ρdeg(vi)(n) = Ξ(H,n),

as we wanted. The lower bound comes from replacing nai with (nai − h) in the first line

of equations.

We generalize the notion of cycle to multi-graphs. For ` ≥ 3, k-cycles are defined as

usual. For k = 2, a 2-cycle consists of two vertices plus two edges joining them, and for

k = 1, a 1-cycle is just a vertex with a loop attached to it. This way, auth.e.(Ck) = 2k,

where Ck is a k-cycle and k ≥ 1. The following results study the number of cycles in

CM(n,d).

Lemma 3.25. Let Xk(n) be the random variable counting k-cycles in CM(n,d). Then,

for any finite collection k1, . . . , kl, the variables Xk1(n), . . . , Xkl(n) converge in distri-

bution to independent Poisson variables whose respective means are ξki = νki/2ki. In

particular, the probability of CM(n,d) being simple is e−
ν
2
− ν

2

4 .

Proof. We prove the first part of the statement. The asymptotic probability that

CM(n,d) is simple follows easily from there. We assume ρ2 > 0. Otherwise all ver-

tices have degree 0 or 1 and the result follows trivially. We use the method of moments.

Let a1, . . . , al ∈ N be arbitrary. We wish to prove

lim
n→∞

E

[
l∏

i=1

(
Xki(n)

ai

)]
=

l∏
i=0

ξaiki
ai!
.

By Theorem 1.4 this implies the result. We say that a multigraphG is a non-degenerate

union of unlabeled multigraphs H1, . . . ,Ht if G contains a copy H ′i of Hi for each i,

V (G) = V (H ′1) ∪ · · · ∪ V (H ′t) (note that this union is not necessarily disjoint), and

the Hi are pairwise different. Let H be the class of all unlabeled multigraphs that

are non-degenerate unions of a1 copies of Ck1 , a2 copies of Ck2 , . . . , and al copies of

Ckl . Note that, in H, only the multigraph H∗ corresponding to the disjoint union of

cycles has zero excess, and ex(H) > 0 for all the others. Given H ∈ H, let YH(n)

be the number of H copies lying in CM(n,d). The l.h.s. in last equation amounts to∑
H∈H

auth.e.(H)
auth.e.(H∗)

E [YH(n)]. We show that asymptotically only E [YH∗(n)] contributes to
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the value of this sum, and this expectation has the desired value. Using the upper bound

in Lemma 3.24 we get

E [YH(n)] ≤ (1 + o(1))
nn(H)

∏
i∈N(ρi(n))ni(H)

(mn)m(H) auth.e.(H)
= O

(
n− ex(H)

∏
i∈N

ρi(n)ni(H)

)
,

where n(H) = |V (H)|,m(H) = |E(H)|, and ni(H) = |{v ∈ V (H) | deg(v) = i}|.
Let H ∈ H be an arbitrary multigraph different from H∗. We show that E [YH(n)] =

o(1). As d is well behaved, ∆(n) = o(n1/2), and ρi+1(n) = o(n1/2ρi(n)) for all i ≥ 1. In

particular, ρi(n) = o(n(i−2)(1/2)) for all i ≥ 3, due to ρ1(n), ρ2(n) = O(1). As H contains

some vertex with degree at least 3, we obtain
∏
i∈N ρi(n)ni(H) = o

(∏∞
i=3 n

ni(H)(i−2)(1/2)
)
.

Observe that
∑

i≥0 ni(H)(i − 2) = 2 ex(H), from where we get
∑

i≥3 ni(H)(i − 2) ≤
2 ex(H) using that the minimum degree of H is at least 2. This way,

E [YH(n)] = o

(
n− ex(H)

∞∏
i=3

nni(H)(i−2)(1/2)

)
= o(1).

Now consider the case H = H∗. All of H∗’s vertices have degree 2, and auth.e.(H∗) =∏l
i=1

1
ai!(2ki)ai

. Here Lemma 3.24 yields E [YH∗,n] =
∏l
i=1

(
ξaiki/ai!

)
+ o(1), using that

n/mn = 1/ρ1(n). Putting everything together, we obtain

lim
n→∞

E

[
l∏

i=1

(
Xki(n)

ai

)]
= lim

n→∞
E [YH∗(n)] =

l∏
i=0

ξaiki
ai!
,

proving our first equation and the result.

Lemma 3.26. Let Xk(n) count the k-cycles in CM(n,d). Assume that ν < 1. Then

the sequence (k 7→ E [Xk(n)])n∈N is tight.

Proof. Clearly, adding or removing isolated vertices to CM(n,d) does not affect the

result, so without loss of generality we may assume λ0 = 0. Additionally, we also

assume λ1 < 1. Otherwise all vertices have degree one, ν = 0, and the result follows

trivially. Let ν < ν ′ < 1. As ν(n) tends to ν, there is some value n′ such that mn > n

and ν(n) < ν ′ for all n greater than n′. Then, from the upper bound in Lemma 3.24

follows that

E [Xk(n)] ≤ (n)k

2k
∏k
`=1(mn − 2`+ 1)

ρ2(n)k ≤ ν(n)k

2k
≤ (ν ′)k

2k
,

for all n > n′ and all k. To see the second inequality, note that mn > n implies

(n− s)/(mn− 2s+ 1) < n/(mn) = 1/ρ1(n). As the sum
∑

`≥1
(ν′)k

2k converges, last chain

of inequalities proves the result.
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Corollary 3.4. Let Z(n) count the cycles in CM(n,d). Assume that ν < 1. Then,

E [Z(n)] = −1/2 ln (1− ν) + o(1).

Proof. LetXk(n) count the k-cycles in CM(n,d), as in the previous lemma. In Lemma 3.25

we showed that E [Xk(n)] = νk/2k + o(1). Hence,

∞∑
k=1

lim
n→∞

E [Xk(n)] = −1/2 ln (1− ν). (3.21)

The variable Z(n) corresponds to the sum
∑∞

k=1Xk(n), so the lemma states that the

limit and sum symbols can be exchanged in this equation, which is true by virtue of last

lemma.

Lemma 3.27. Assume ν < 1. Let a = (a`)`∈N be a sequence of natural numbers a` ∈ N
whose sum

∑
`∈N a` is finite. The following hold true:

(1) Let A(n) be the event that CM(n,d) contains exactly a` `-cycles for all ` ∈ N.

Then

Pr(A(n)) =
√

1− ν
∏
`∈N

(ν`/2`)a`

a`!
+ o(1).

In particular, the probability that CM(n,d) is acyclic is
√

1− ν + o(1).

(2) Let B(n) be the event that G(n,d) contains exactly a` `-cycles for all ` ≥ 3. Then

Pr(B(n)) =
√

1− ν e−
ν
2
− ν

2

4

∏
`≥3

(ν`/2`)a`

a`!
+ o(1).

In particular, the probability that G(n,d) is acyclic is
√

1− ν e−
ν
2
− ν

2

4 + o(1).

Proof. We prove (1). Statement (2) follows from the fact that G(n,d) is distributed like

CM(n,d) conditioned on the absence of 1-cycles and 2-cycles. Let Xk(n) count the k-

cycles in CM(n,d). This way, A(n) =
∧
k≥1Xk(n) = ak, and Pr(A(n)) = limk→∞ pk(n),

where pk(n) = Pr(
∧k
i=1Xi(n) = ai). Let ε > 0 be arbitrarily small. We prove that∣∣∣∣∣Pr(A(n))−

√
1− ν

∏
`∈N

(ν`/2`)a`

a`!

∣∣∣∣∣ < ε+ o(1). (3.22)

Let K be a sufficiently large number satisfying both (I)∣∣∣∣∣
(

K∏
k=1

e−ν
k/2k (νk/2k)ak

ak!

)
−

(
√

1− ν
∏
k∈N

(νk/2k)ak

ak!

)∣∣∣∣∣ < ε/2,
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and (II)

Pr(
∑
i>K

Xi(n) = 0) > 1− ε/2 for all n.

Property (I) can be attained because inside the absolute value, for ν < 1, the parentheses

on the right contain the limit (as K tends to infinity) of the expression in the parentheses

on the left. The existence of k satisfying (II) follows from (k 7→ E [Xk(n)])n∈N being

tight, as shown in Corollary 3.4, and Markov’s inequality. Indeed, there by the tightness

property there is some K for which
∑

i>K E [Xi(n)] < ε/2 uniformly in n, and then

Pr(
∑

i>K Xi(n) = 0) > 1− ε/2 uniformly in n as well.

Property (II) and the intersection bound imply that Pr(A(n)) > pK(n) − ε/2 for

all n. In addition to that, the sequence (pk(n))k≥1 is monotonically decreasing, so

Pr(A(n)) ≤ pK(n) for all n. This way, limn→∞|Pr(A(n)) − pK(n)| < ε/2. However, by

Lemma 3.25

pK(n) =

K∏
k=1

eν
k/2k (νk/2k)ak

ak!
+ o(1).

Applying property (I) here yields Equation (3.22), and completes the proof.

As mentioned at the beginning of the section, in [54] a phase transition for G(n,d)

was shown under very similar conditions to ours. Roughly, they show that when ν < 1,

w.h.p. all components in CM(n,d) are of sublinear size, and none of them contain more

than one cycle. They show this last statement examining the exposure of a connected

component in CM(n,d) and employing Azuma’s inequality. Their arguments make use

of stronger assumptions than ours on the maximum degree of d(n). However, we can

follow a more cumbersome First-Moment argument to prove the same result in our

setting.

Theorem 3.6. Assume ν < 1. Then a.a.s CM(n,d) has no connected component

containing more than one cycle.

Proof. Without loss of generality we may assume that λ0 = 0. Also, with no loss of

generality as well, we can assume λ1 < 1. Otherwise all vertices have degree 1 and the

theorem holds trivially. Note that λ0 > 1 and λ1 < 1 together imply ρ1 > 1.

The configuration CM(n,d) has two cycles lying in the same component iff it has

some sub-graph belonging to one of the following classes:

(I) H
(1)
i,j,k : A i-cycle and an j-cycle together with a path of length k ≥ 2 joining a

vertex from each cycle.

(II) H
(2)
i,j,k : A i-cycle and an j-cycle sharing a path of length k ≥ 2.

(III) H
(3)
i,j : A i-cycle and a j-cycle sharing a single vertex.

We show that a.a.s. none of these sub-graphs appear in CM(n,d) using the first-

moment method. Let us consider (I) first. Let X
(1)
i,j,k(n) count the copies of H

(1)
i,j,k in
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CM(n,d). The multigraph H
(1)
i,j,k has i + j + k − 1 edges and i + j + k − 2 vertices,

among which two have degree 3 and the rest have degree 2. This way, by Lemma 3.24,

for sufficiently large n

E
[
X

(1)
i,j,k(n)

]
≤ (n)`∏`+1

s=1(mn − 2s+ 1)
ρ2(n)`−2ρ3(n)2

≤ ν(n)`−2 ρ3(n)2

(mn − 2`− 1)

≤ ν(n)`−2 ρ3(n)2

2(ρ1(n)− 1)n− 1
, (3.23)

where ` = i+ j + k − 2. Second inequality follows from (n− s)/(mn − 2s+ 1) ≤ n/mn,

because mn > n for sufficiently large n, as ρ1 > 1, and n/mn = 1/ρ1(n). Last inequality

follows from ` ≤ n and (mn − 2n − 1) = 2(ρ1(n) − 1)n − 1. Let X
(1)
` = X

(1)
` (n) be the

sum of all variables X
(1)
i,j,k(n) with i + j + k − 2 = `. There are at most `2 such choices

of i, j, k, so E
[
X

(1)
`

]
≤ `2ν(n)`−2 ρ3(n)2

2(ρ1(n)−1)n−1 . By hypothesis ρ1 > 1, so

∞∑
`=3

E
[
X

(1)
`

]
= O

(
ρ3(n)2

n

∞∑
`=3

ν``2

)
= O

(
ρ3(n)2

n

)
.

Notice that, ρ3(n) ≤ ρ2(n)∆(n) = o(
√
n), so ρ3(n)2/n = o(1). This way, using

Markov’s inequality we obtain that a.a.s. no class-(I) sub-graph occurs in CM(n,d).

In an analogous way, it can be shown that the expected numbers of class-(II) and

class-(III) sub-graphs in CM(n,d) are O
(
ρ3(n)2

n

)
and O

(
ρ4(n)
n

)
respectively. As we

have seen ρ3(n)2

n = o(1), so a.a.s. CM(n,d) has no class-(II) sub-graph. Similarly,

ρ4(n) ≤ ∆(n)2ρ2(n) = o(n), so a.a.s. CM(n,d) contains no class-(III) sub-graph either.

This proves the result.

Fragment Distribution

During this section, a fragment is a multigraph whose components are all unicyclic,

similarly to the case of graphs. We call a fragment simple if it contains no loops nor

double-edges, or, equivalently, if it contains no cycles of length smaller than 3. The

fragment Frag(G) of a multigraph G is the union of its unicyclic components. Let

Frag∗n = Frag(CM(n,d)) and Fragn = Frag(G(n,d)).

Theorem 3.7. Suppose ν < 1. If H is a fragment, then

lim
n→∞

Pr(Frag∗n ' H) =

√
1− ν

auth.e.(H)

∏
i≥1

(
λii!

ρ1

)hi
,

where hi = |{v ∈ V (H) | deg(v) = i}|.
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Proof. Let h = |V (H)| and hi = |{v ∈ V (H) | deg(v) = i}|. Let V (H) = {v1, . . . , vh}.
For each vi ∈ V (H) fix some ordering of the half-edges incident to vi. Define H(n) as

the set of possible isolated H-copies in CM(n,d). In order to pick a copy H ′ ∈ H(n),

we first select the vertices v′1, . . . , v
′
h. As we want the copy to be isolated, we require

dv′i(n) = deg(vi) for all 1 ≤ i ≤ h. In order to completely determine H ′ we give an

ordering of the half-edges incident to each vertex v′i. Afterwards, half-edges should be

matched according to the half-edge orderings defined for H. Observe that there are

exactly auth.e.(H) ways of picking vertices and half-edge orderings that result in the

same sub-configuration H ′. Hence,

|H(n)| =
∏
i≥0(ni)hi(i!)

hi

auth.e.(H)
.

Given H ′ ∈ H(n), let A(H ′, n) be the event that H ′ ⊆ CM(n,d) and CM(n,d) \ V (H ′)

is acyclic. Observe that the events A(H ′, n) are disjoint. Let P (n) be the event that no

component in CM(n,d) contains more than one cycle. Then the event (Frag∗n ' H |
P (n)) coincides with the union of the events A(H ′, n). Thus, by Theorem 3.6

Pr(Frag∗n ' H) =
∑

H′∈H(n)

Pr(A(H ′, n)) + o(1).

By symmetry, the probability A(H ′, n) is the same for all H ′ ∈ H(n). Fix an H-copy

H ′n ∈ H(n) for each n. Using the expression for |H(n)|, we obtain

Pr(Frag∗n ' H) =

∏
i≥0(ni)hi(i!)

hi

auth.e.(H)
Pr(A(H ′n, n)) + o(1).

Let us examine now the probability of A(H ′n, n). Let Ĝn be the random multigraph

CM(n,d) \ V (H ′n). By definition

Pr(A(H ′n, n)) =
1∏h

i=1(2mn − 2i+ 1)
Pr
(
Ĝn is acyclic

∣∣∣ H ′n ⊆ CM(n,d)
)
.

For each n, let d̂(n− h) be a degree sequence obtained by removing the vertices V (H ′n)

from [n] and relabeling the remaining vertices as [n − h]. Note that (Ĝn | H ′n ⊆
CM(n,d)) ∼ CM(n− h, d̂). Clearly, the asymptotic degree sequence d̂ is well-behaved.

Additionally, it is easy to see that the first and second moments of the related degree

distribution have the same limits as those of d (that is, ρ1 and ρ2 as h = O(1). By

Lemma 3.27,

Pr
(
Ĝn is acyclic

∣∣∣ H ′n ⊆ CM(n,d)
)

=
√

1− ν + o(1).
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Putting everything together, we obtain

Pr(Frag∗n ' H) =

√
1− ν

∏
i≥0(ni)hi(i!)

hi

auth.e.(H)
∏h
i=1(2mn − 2i+ 1)

+ o(1)

=

√
1− ν

auth.e.(H)

∏
i≥1

(
λii!

ρ1

)hi
+ o(1),

as in the theorem’s statement. This completes the proof.

The following Corollary states that the fragment of G(n,d) is asymptotically dis-

tributed like the simple fragment of CM(n,d).

Corollary 3.5. Assume that ν < 1. Let G be a simple fragment. Then

lim
n→∞

Pr(Fragn ' G) =

√
1− ν e−ν/2−ν2/4

aut(G)

∏
i≥1

(
λii!

ρ1

)gi
,

where gi = |{v ∈ V (G) | deg(v) = i}|.

Proof. Let A(n) be the event that CM(n,d) is simple (i.e., it contains no loops nor

multiple edges). By definition, Pr(Fragn ' G) = Pr(Frag∗n ' G | A(n)). When

CM(n,d) has no complex components, the event (Frag∗n ' G) ∧ A(n) is equivalent to

Frag∗n ' G. This way, using Theorem 3.6 we obtain

Pr(Fragn ' G) = Pr(Frag∗n ' G) Pr(A(n)) + o(1).

By Corollary 3.4 Pr(A(n)) = e−ν/2−ν
2/4+o(1). This, together with the previous theorem

and the fact that aut(G) = auth.e.(G) when G is simple, proves the result.

From now on let p∗H(n) = Pr(Frag∗n ' H), pG(n) = Pr(Fragn ' G),

p∗H = limn→∞ p
∗
H(n), and pG = limn→∞ pG(n), for all unlabeled fragments H, and

unlabeled simple fragments G. Our next goal is to show that the numbers p∗H define a

distribution over unlabeled fragments, meaning that
∑

H p
∗
H = 1. For this, we define a

random fragment Γ satisfying Pr(Γ ' H) = p∗H .

Definition 3.2 (Random Fragment). Suppose ν < 1. Define the distributions D̂ and D̂′

over N by Pr(D̂ = i− 1) = λii
ρ1

and Pr(D̂′ = i− 2) = λii(i−1)
ρ2

, respectively. Let (BPr)r∈N
be mutually independent branching processes, where BPr has r roots, its root offspring

distribution is D̂′ and its general offspring distribution is D̂. Let (Zi)i≥1 be mutually

independent Poisson variables, which are mutually independent with (BPr)r∈N as well,

and where E [Zi] = νi

2i . Let R =
∑

i iZi. The random fragment Γ = Γ(d) associated

to the a.d.s. d, is obtained as follows: First we generate the random rooted forest BPR.

Observe that the offspring distribution D̂ has mean ν < 1, so BPR yields a distribution
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over finite rooted forests by Lemma 1.3. Afterwards, we form various cycles using the

roots 1, . . . , R as follows: For every k, we form Zk k-cycles, one with each successive

k-tuple of roots with labels in the interval
(∑k−1

i=1 iZi,
∑k

i=1 iZi

]
.

Showing that this random fragment Γ satisfies the desired identities Pr(Γ ' H) = p∗H

is not completely straight-forward. In order to compute Pr(Γ ' H), we need to count

how many concrete outcomes of Γ yield a fragment isomorphic to H. The following

definition has that purpose.

Definition 3.3. A Ulam-Harris (UH) fragment G is an ordered labeled fragment,

where the vertices in V (G) are words ω ∈ N∗, equipped with the usual lexicographical

order, and satisfying:

– The vertices belonging to cycles are labeled by singleton words (i.e., numbers)

1, . . . , r.

– Vertices in the same cycle are labeled by consecutive numbers, according to the

cyclic order.

– Vertices belonging to i-cycles have correspond to smaller numbers than vertices

belonging to j-cycles, for any i < j.

– The rooted forest resulting from marking vertices lying in cycles as roots and

removing all edges forming cycles, is a UH Definition 1.3 forest.

This way, cycles in a Ulam-Harris fragment are ordered, from shortest to largest, vertices

inside cycles are ordered in a cyclic manner, and vertices in attached trees are ordered

in a breadth-first fashion.

Observe that each outcome of Γ has a natural representation as a UH fragment:

roots are ordered in the appropriate way, and the random forest hanging from the roots

is an U.H. forest as in Definition 1.3. Moreover, isomorphic U.H. fragments have the

same probability of being the outcome of Γ. Using this fact we are able to prove the

following lemma.

Lemma 3.28. Assume ν < 1. Let Γ be the random fragment given in Definition 3.2,

and let H be an arbitrary unlabeled fragment. Then Pr(Γ ' H) = p∗H .

Proof. Fix H, and let G be a UH fragment isomorphic to H. Let h = n(G), hi = ni(G).

We define ci as number of i-cycles in G, h′ as the number of vertices belonging to cycles

in G, and h′i as the number of degree-i vertices belonging to these cycles. The graph Γ is

completely determined by the random variables (Zi)i∈N and the random labeled forest
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BPR. Letting R =
√

1− ν, we obtain

Pr(Γ = G) =

(
R
∏
i∈N

(νi/2i)ci

ci!

)(∏
i∈N

Pr(D̂′ = i− 2)h
′
i

)(∏
i∈N

Pr(D̂ = i− 1)hi−h
′
i

)

=

(
R

νh
′∏

i∈N(2i)cici!

)(∏
i∈N (λii(i− 1))h

′
i

ρh
′

2

)(∏
i∈N (λii)

hi−h′i

ρh−h
′

1

)

= R

(∏
i∈N (λii(i− 1))h

′
i (λii)

hi−h′i

ρh1
∏
i∈N(2i)cici!

)
. (3.24)

Now we count all the different U.H. fragments G′ isomorphic to H. There are three

operations that can be performed on G to produce an isomorphic U.H. fragment:

1 Inside a tree attached to a cycle, we can arbitrarily change the order of any vertex’s

children.

2 Arbitrarily change the order of cycles of the same length.

3 Inside a cycle, we can change the ordering of the vertices for another cyclic order-

ing.

Operations (1) and (2) can be performed in
∏
i≥1(i − 2)!h

′
i(i − 1)!hi−h

′
i , and

∏
i≥1 ci!

different ways, respectively. The number of ways to apply (3) depends on the length

of the cycle. For cycles of length k ≥ 3, there are 2k cyclic orderings of their vertices.

However, for k = 1, 2, vertices inside a k-cycle admit only k cyclic orderings. Thus

operation (3) can be performed in 1
2c1+c2

∏
i≥1(2i)ci ways. Among all these ways of

permuting vertices in G, aut(H) ones yield G itself. Thus, the number of different U.H.

fragments isomorphic to H is(∏
i≥1(i− 2)!h

′
i(i− 1)!hi−h

′
i

)(∏
i≥1 2icici!

)
aut(H)2c1+c2

.

Observe that auth.e.(H) = aut(H)2c1+c2 . This way, the amount above multiplied with

last expression in Equation (3.24) yields Pr(Γ ' H) = p∗H , as we wanted.

Theorem 3.8 (Combinatorial Interpretation of The Fragment Distribution). Suppose

ν < 1. Let H be the class of unlabeled fragments. Then
∑

H∈H p
∗
H = 1.

Proof. By last lemma it is sufficient to show that the model Γ(d) defined in Definition 3.2

induces a distribution over unlabeled fragments. The total number of cycles in Γ, R, and

the number of i-cycles, Zi, have well-defined distributions over Z. In addition to that,

the general offspring distribution of BPr is D̂, whose mean is ν < 1, so by Lemma 1.3,

this branching process induces a well-defined distribution over finite rooted forests. This

completes the proof.
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Corollary 3.6. Assume ν < 1. Let F be the class of unlabeled fragments. Then the

sequences (H 7→ p∗H(n))n∈N and (H 7→ pH(n))n∈N of real maps over F are tight. In

particular, for all functions ω(n) tending to infinity, Pr(|Frag∗n| ≥ ω(n)) = o(1) and

Pr(|Fragn| ≥ ω(n)) = o(1).

Proof. The last part of the statement follows from the definition tight sequence. The fact

that (H 7→ p∗H(n))n∈N is tight follows from last theorem. To see that (H 7→ pH(n))n∈N is

tight as well, note that by definition pH(n) ≤ Pr(Frag∗n ' H)/Pr(CM(n,d) is simple),

and

1/Pr(CM(n,d) is simple) ≤ eν/2+ν4/4 + o(1).

3.3.2 No gap when ν ≥ 1

The following can be proven exactly as Lemma 3.8, using the results from the previous

section.

Theorem 3.9. Assume ν ≥ 1. Then Ld = [0, 1].

3.3.3 Always a finite union of intervals

Here we study Ld in the case ν < 1. Once more, as in the previous sections, it holds

that the ≡k-class of G(n,d) is determined w.h.p. by its fragment Fragn when ν < 1.

This is (implicitly) stated in [47][Lemma 3.12]. However, the results in [46, 47] contain

slight inaccuracies. These are discussed in Section 3.3.5.

Theorem 3.10. Suppose that ν < 1. Let H ∈ F be some fragment, and ϕ ∈ FOg be a

sentence. Then

lim
n→∞

Pr(G(n,d) |= ϕ | Fragn ' H) = 0 or 1.

Recall that when ν < 1 and H ∈ F is some fragment, pH(n) stands for the probability

Pr(Fragn ' H), and pH = limn→∞ pH(n). Similarly to the previous sections, it turns out

that Ld equals the set of partial sums of fragments probabilities. This allows us to study

Ld using Kakeya’s criterion. The following can be proven exactly as in Lemma 3.10,

using last theorem and the fact that the fragment distribution is tight (Corollary 3.6).

Theorem 3.11. Assume ν < 1. Then

Ld =

{∑
H∈U

pH

∣∣∣∣∣ U ⊆ F

}
.

As in previous sections, now the desired results about Ld follow from analysing the

set of fragment probabilities and using Kakeya’s Criterion. However, a difficulty here is
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that fragment probabilities depend on many features of d other than the parameter ν.

In order to circumvent this issue, we use the following lemma.

Lemma 3.29. Suppose that ν < 1. Define Q = Q(ν) =
√

1− ν e−ν/2−ν2/4. Let a =

(an)n≥3 be a sequence of natural numbers an ∈ N whose sum
∑

n≥3 an is finite. Let Fa

be the set of fragments

{H ∈ F | H contains exactly ai i-cycles for all i ≥ 3}.

Then ∑
H∈Fa

pH = Q
∏
i≥3

(νi/2i)ai

ai!
. (3.25)

In particular, pH is maximized when H is the empty fragment.

Proof. Let A(n) be the event that G(n,d) contains exactly ai i-cycles for each i ≥ 3. By

Lemma 3.27 it holds that

Pr(A(n)) = Q
∏
i≥3

(νi/2i)ai

ai!
+ o(1).

For each H ∈ F, let

qH(n) = Pr(A(n) | Fragn ' H) Pr(Fragn ' H).

By the law of total probability Pr(An) =
∑

H∈F qH(n). Moreover, observe that qH(n) ≤
pH(n) for all H, so the sequence of maps (H 7→ qH(n))n∈N is tight. This way

lim
n→∞

Pr(A(n)) =
∑
H∈F

lim
n→∞

qH(n).

By Theorem 3.6, we know that w.h.p. all cycles in G(n,d) lie in Fragn. This implies that

qH(n) = pH + o(1) if H ∈ Fa and qH(n) = o(1) otherwise. Using this in last equality

shows Equation (3.25).

We show now the last part of the lemma, which states that pH is maximized for the

empty fragment H. Let H ∈ F be not empty, and let a = (ai)i≥3 be the sequence where

ai is the number of i-cycles in H for each i ≥ 3. By Equation (3.25),

pH ≤ Q
∏
i≥3

(νi/2i)ai

ai!
.

However, as ν < 1, the expression on the right is at most Q, which is the probability of

the empty fragment. This completes the proof.

For the remainder of this subsection, we number the fragments in F as H1, H2, . . .
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in such a way that pHi ≥ pHj for all i < j. For convenience we define pi = pHi . For each

i > 1, let k = k(i) be the number satisfying

Q
νk

2k
≥ pi > Q

νk+1

2(k + 1)
,

where Q =
√

1− ν e−ν/2−ν2/4 as in last lemma. We impose the condition i > 1, because

for i = 1, by Lemma 3.29, H1 corresponds to the empty fragment and p1 = Q, so

k(1) would not be well-defined. Observe that Lemma 3.29 also implies k(i) ≥ 3 for all

i > 1. Finally, the probabilities pi are non-increasing and have limit zero, so k(i) is

non-decreasing and tends to infinity with i.

Lemma 3.30. Assume ν < 1. Then Ld is a finite union of intervals in [0, 1].

Proof. Let i0 be an index for which k0 = k(i0) satisfies
∑k0−2

j=3 1/j ≥ 4/ν. The harmonic

series
∑

1/j is divergent, so this value i0 exists. We prove that pi ≤
∑

j>i pj for i ≥ i0.

By Kakeya’s Criterion, this implies the result. Let i > i0, k = k(i). For each 3 ≤ ` ≤
bk+1

2 c, let F` be the set of unlabeled fragments containing a `-cycle, a (k − `+ 1)-cycle,

and no other cycle. By Lemma 3.29, it holds that
∑

H∈F` pH equals Q νk+1

4j(k−`+1) for

` 6= (k + 1)/2, and half this value for ` = (k + 1)/2. In all cases, this quantity is less

than Q νk+1

2(k+1) , so pH < pi for all H ∈ F`. This shows that the elements of F` contribute

to the tail
∑

j>i pj . In other words, F` ⊂ {Hj | i > j}. The same expression holds true

when substituting F` for the disjoint union of all the sets F`. This way,

∑
j>i

pj ≥
b k+1

2
c∑

`=3

∑
H∈F`

pH =
Qνk+1

8

k−2∑
`=3

1

`(k − `+ 1)
≥ Qνk+1

8k

k−2∑
`=3

1

`
≥ Qνk

2k
.

Last inequality holds because of our choice of k = k(i). By hypothesis, pi ≤ Qνk/2k, so

pi ≤
∑

j>i pj , as we wanted to show. This proves the result.

3.3.4 Transition at ν0

Lemma 3.31. Let ν0 be as defined in Equation (3.20). The following hold. (1) If

0 < ν < ν0, then Ld has at least one gap, and (2) if ν0 ≤ ν < 1, then Ld = [0, 1].

Proof. As in the previous subsection, let H1, H2, . . . be an enumeration of the class of

fragments F satisfying pH1 ≥ pH2 ≥ . . . , and let pi = pHi for all i. By Kakeya’s theorem,

Ld = [0, 1] if and only if

pi ≤
∑
j>i

pj , (3.26)

being true for all i. We begin by showing (1). Recall that ν0 is defined as the only

solution to Q(ν0) = 1/2 lying in [0, 1]. As Q(ν) is monotonically decreasing in [0, 1]
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and 0 < ν < ν0, it holds Q > 1/2. By Lemma 3.29, H1 corresponds to the empty

fragment, so p1 = Q > 1/2 >
∑

j>1 pj . using that
∑

j≥1 pj = 1. Hence, eq. (3.26)

does not hold for i = 1 and Ld contains at least one gap. Now we proceed to show (2).

In this case, ν0 ≤ ν < 1, and eq. (3.26) holds for i = 1, because Q ≤ 1/2. We show

that eq. (3.26) holds for i > 1 as well. Fix i > 1. For all ` ≥ 3, we define F` as the

set of unlabeled fragments containing an `-cycle and no other cycles. By Lemma 3.29,∑
H∈F` pH = Qν`/(2`). Similarly to last theorem, with this we obtain

∑
j>i

pj ≥
∑
`>k

∑
H∈F`

pH =
∑
`>k

Q
ν`

2`
≥ Qνk

2k

∑
`≥1

(
ν(k + 1)

k

)`
,

where k = k(i). Last inequality above follows from the quotient
(
Qν`+1

2(`+1)

)/(
Qν`

2(`)

)
being

at most νk
k+1 for all ` > k. In addition to that, we have k(i) ≥ 3 for all i > 1, so k/(k+1) ≥

3/4. Joining this with the inequality above we obtain
∑

j>i pj ≥
Qνk

2k

∑
`>1(3ν/4)`. Note

that ν0 ≥ 3/4, so last sum is at least 9
16

1
1−9/16 = 9/7. Putting this together with last

inequality we obtain ∑
j>i

pj ≥
Qνk

2k

9

7
>
Qνk

2k
.

But by definition of k(i), it holds pi ≤ Qνk

2k , so we have proven eq. (3.26) for our choice

of i. This proves the result.

3.3.5 Remarks About the Convergence Law

In this section we discuss the convergence law studied by Lynch in [47, 46]. The main

result there states that for any sentence φ ∈ FOg, the limit of Pr(G(n,d) |= φ) exists. We

note that in those works conditions different than ours are imposed on the asymptotic

degree sequence d. More precisely, there is no condition stating that the second moment

E
[
D2
n

]
converges to a finite quantity. Instead, this is replaced by the existence of some

cutoff function ω(n) satisfying ∆(n) ≤ ω(n). In [46], ω(n) = nα, where α < 1/4, while

in [47], ω(n) was sub-polynomial (that is, ω(n) = o(nα) for all α > 0). Observe that

neither cutoff is enough to guarantee that E
[
D2
n

]
converges to a finite quantity (in fact,

no diverging cutoff function suffices). We shall see that these cutoff requirements are

not enough to justify the proofs presented in [47, 46]. However, under our conditions

the techniques shown in those papers can be applied and a convergence law holds.

The approach followed in [47, 46] consists of proving a FO convergence law for

the configuration model CM(n,d) and transferring this result to G(n,d) afterwards.

Configurations F are seen as relational structures whose elements e ∈ F are the half-

edges, equipped with two relations: a matching M , relating half-edges that are joined,

and an equivalence relation ≡ that relates half-edges belonging to the same vertex.
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Hence, the first-order language for configurations is FO[σCM], where σCM = {M,≡},
and sentences φ ∈ FO[σCM] are interpreted in the obvious way. It is easy to see that for

any graph sentence φ ∈ FOg, there is another one φF ∈ FO[σCM] such that any simple

configuration (i.e., configuration with no loops of multiple edges) F satisfies F |= φF iff

G |= φ, where G is the underlying graph of F .

Suppose that a FO[σCM]-convergence law holds for CM(n,d). In [47, 46] is ar-

gued that a FOg-convergence law for G(n,d) follows. The property of being simple is

expressible via a sentence ψ ∈ FO[σCM]. Let φ ∈ FOg be an arbitrary sentence and

let φF ∈ FO[σCM] be a sentence for configurations chosen as described in the previous

paragraph. Then:

Pr(G(n,d) |= φ) =
Pr(CM(n,d) |= ψ ∧ φF )

Pr(CM(n,d) |= ψ)
.

This alone yields a convergence law for G(n,d) as long as Pr(CM(n,d) |= ψ) has a

positive limit. In [47, 46] is stated that this is the case. However, this is not true when

E
[
D2
n

]
diverges.

Lemma 3.32. Let d = d(n) be a smooth asymptotic degree sequence with E
[
D2
n

]
di-

verging to infinity. Then CM(n,d) a.a.s. contains a loop.

Sketch of the proof. Let X(n) count the loops in CM(n,d). Then

E [X(n)] =
1

2

∑
v∈[n]

dv(n)(dv(n)− 1)

2mn − 1
=

1

2

ρ2(n)

ρ1(n)− 1/n
.

Using that ρ2(n) diverges and d is smooth we get that E [X(n)] tends to infinity. The

result follows now after showing Var (X(n)) = o(E
[
X(n)2

]
) and applying the second

moment method.

Nevertheless, the arguments in [47, 46] work when d is well-behaved as we assumed

throughout this section. The proof follows the analogous one for G(n, c/n) given in [50].

We sketch the arguments here. Given r, n, let Frag∗n|r be the r-neighbourhood of all

cycles of length at most 2r+ 1 lying in CM(n,d). For each r, there are distributions Γ|r
and T |r, over unlabeled r-fragments and unlabeled rooted trees, respectively, satisfying:

(1) Frag∗n|r converges in distribution to Γ|r.
(2) For any fixed `, the r-neighborhood of ` uniformly-chosen vertices in CM(n,d)

converges in distribution to (T |r)`.

From those two facts we can derive that, for any r, CM(n,d) is r-simple w.h.p. in the

sense of Definition 2.6. We can also conclude that, for all k, r, CM(n,d) is (k, r)-rich

in the sense of Definition 2.7, but considering only ≡Ly
k -classes of trees C that have non-

zero probability according to T |r. This is enough to show that the ≡Ly
k -class of Frag∗n|r
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determines the ≡k-class of CM(n,d) using the strategy given in Theorem 2.3, and to

prove a convergence law along the lines of Theorem 2.1. We remark that we are being

slightly informal here: in order to properly reproduce these arguments we need to define

the notions of tree, cycle, fragment, ≡Ly
k , and so on over configurations. However, the

intuitive definitions fortunately work.
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Chapter 4

Preservation Theorems for FO

Logic on Random Graphs

Preservation theorems are classical result from first-order logic stating the equivalence

of certain semantic classes and syntactic classes of sentences. A remarkable aspect of

those results is that the semantic classes they talk about are not decidable ( i.e., there

is no algorithmic procedure determining whether a general sentence belongs to the class

or not), while the syntactic classes are.

A sentence ϕ ∈ FO[σ] is called monotone in a relation symbol R ∈ σ, if G |= ϕ

implies G′ |= ϕ for any σ-structures (finite or infinite) G,G′ where G′ is obtained from G

by adding tuples to R(G). We write G ≤R G′ to represent this situation. When ϕ ∈ FOg

and R is the adjacency relation, we simply say ϕ is positive. A ϕ ∈ FO[σ] is preserved

under extensions if G |= ϕ implies G′ |= ϕ for any σ-structures (finite or infinite) G,G′

where G′ contains some induced G-copy. This situation is represented as G @ G′. An

homomorphism between σ-structures G,G′ is a map f : V (G)→ V (G′) that maps cG

to cG
′

for each constant symbol c ∈ σ and maps tuples from R(G) to tuples from R(G′)

for all relations R ∈ σ. We write G → G′ to denote that there is some homomorphism

from G to G′. A sentence ϕ ∈ FO[σ] is preserved under homomorphisms if G |= ϕ

implies G′ |= ϕ, for all (finite or infinite) σ-structures G,G′ with G→ G′.

The properties of FO sentences introduced above are semantic in the sense that

they are defined by imposing some constraints on their classes of models. Perhaps

unsurprisingly, those properties are undecidable. For example, given a sentence ϕ ∈
FO[σ], we define the sentence ψ ∈ FO[σ′] as ϕ ∧ ∀x¬R(x), where σ′ = σ ∪ {R} and

R is a fresh unary relation symbol. It is easy to see that ψ is monotone in R if and

only if ϕ does not have any non-empty model. However, satisfiability of FO-sentences is

undecidable, as shown by Church [13] and Turing [67] independently. Similar tricks can

be used to show the undecidability of closedness under extensions and closedness under
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homomorphisms.

A sentence ϕ ∈ σ[σ] is positive in a relation R ∈ σ if R does not appear in ψ for

all sub-formulas ¬ψ of ϕ. If ϕ is positive in all relations R ∈ σ, then ϕ is simply called

positive. The sentence ϕ is said to be existential if it is in prenex normal form, and

all its quantifiers are existential. Clearly, it is easy to recognize whenever a formula

is positive or existential. The following three results are the so-called preservation

theorems in FO logic:

Theorem 4.1 (Lyndon’s Theorem [51]). Let ϕ ∈ FO[σ] be a sentence which is monotone

in a relation symbol R ∈ σ. Then ϕ is equivalent to another sentence ψ ∈ FO[σ] which

is positive in R.

Theorem 4.2 ( Loś-Tarski Theorem [32]). Let ϕ ∈ FO[σ] be a sentence preserved under

extensions. Then ϕ is equivalent to an existential sentence ψ ∈ FO[σ].

Theorem 4.3 (Homomorphism Preservation Theorem [58]). Let ϕ ∈ FO[σ] be a sen-

tence preserved under homomorphisms. Then ϕ is equivalent to an existential positive

sentence ψ ∈ FO[σ].

It is well-known that many features of FO logic do not survive the restriction to

finite models. The most salient example is the failure of the Compactness Theorem (an

important tool in model theory) on finite structures [44]. Among the three preservation

theorems introduced above, only the Homomorphism Preservation Theorem (shortened

to HMT) is still true when restricted to the finite case. We give the precise statements

below. Given a class C of σ-structures, a sentence ϕ ∈ FO[σ] is said to be positive in

R ∈ σ on C if G |= ϕ implies G′ |= ϕ whenever G ≤R G′ for G,G′ ∈ C. The notions of

sentence preserved under homomorphisms on C and preserved under extensions

on C are defined similarly. Two sentences ϕ,ψ ∈ FO[σ] are said to be equivalent on C
if ϕ↔ ψ holds in all structures G ∈ C. We say that either of the preservation theorems

above (Theorems 4.1 to 4.3) holds in a class C when they remain true after restricting to

C the notions of monotonicity, preservation under homomorphisms, preservation under

extensions, and equivalence between sentences.

Theorem 4.4 (Lyndon’s Theorem fails on finite structures [2, 65]). There exists a

signature σ and a sentence ϕ ∈ FO[σ] which is monotone in R ∈ σ on finite structures

and is not finitely (i.e., on finite structures) equivalent to any sentence ψ ∈ FO[σ]

positive in R.

Theorem 4.5 ( Loś-Tarski Theorem fails on finite structures [66]). There exists a signa-

ture σ and a sentence ϕ ∈ FO[σ] which is preserved under extensions on finite structures

and is not finitely equivalent to any existential sentence ψ ∈ FO[σ].
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Theorem 4.6 (Finite HPT [58]). The Homomorphism Preservation Theorem holds on

finite structures.

Even more, counterexamples for Lyndon’s and  Loś-Tarski Theorems over finite graphs

have been found recently in [40] and [12] respectively. However, it turns out that those

counterexamples quite involved, and the underlying reasons why those preservation the-

orems fail are not straightforward. There is a line of research which tries to establish

precise conditions under which preservation theorems hold in a particular class C [7, 8,

18, 17]. Most of this work focuses on the HMT [8, 18], except for [8], which deals with

 Loś-Tarski Theorem.

Given that the obstacles to Lyndon’s and  Loś-Tarski theorems on finite structures

seem to be somewhat artificial, a natural question is whether those results are still

“mostly true” in some sense. The purpose of this chapter is to study those two preserva-

tion theorems in the context of random graphs. Given a random graph model (Gn)n∈N,

we say that Lyndon’s ( Loś-Tarski) Theorem holds a.a.s. in Gn if for any sentence

ϕ ∈ FOg which is monotone (preserved under extensions) on finite graphs there is an-

other positive sentence (existential sentence) ψ ∈ FOg such that a.a.s. Gn |= ϕ ↔ ψ.

Observe that if the asymptotic probability of ϕ is either zero or one for all monotone

sentences, or those preserved under extensions, then the respective preservation theorem

holds a.a.s. trivially.

During this chapter we give various positive results in this regard, particularly for

Gn = G(n, p) in the regimes p ∼ c/n Section 4.1, p ∼ cn−1−1/` Section 4.2, and p =

Θ(log n/n) Section 4.3, the main cases where a FOg-convergence law holds, but a zero-

one law does not. Additionally, we also study the case where Gn is chosen uniformly

from an addable minor-closed class Section 4.4.

4.1 Preservation Theorems on Sparse Graphs

The main theorem of this section is the following.

Theorem 4.7. Let ϕ ∈ FOg be a sentence which is either monotone or preserved under

extensions on finite structures. Then there is an existential positive sentence ψ ∈ FOg

such that

lim
n→∞

Pr(G(n, p) |= ϕ↔ ψ) = 1,

for all probabilities p = p(n) satisfying p ∼ c/n for some c > 0. In particular, both

Lyndon’s and  Loś-Tarski Theorems hold a.a.s. in G(n, p).

We sketch the proof below. Some definitions are needed for that.

Definition 4.1. Similarly to Definition 2.5, the r-core Core(G)|r of a graph G as the

r-neighbourhood of all its cycles of length at most 2r + 1.



86 Sparse Graphs

Definition 4.2. Given two graphs G,H, we write G ≤mo
k H if H satisfies all sentences

ϕ ∈ FOg that are monotone on finite graphs with qr(ϕ) ≤ k and hold in G. Similarly,

we write G ≤ext
k H if the same holds for sentences ϕ closed under extensions on finite

structures, instead of monotone.

The main ideas for showing Theorem 4.7 are as follows. We focus on the case where

ϕ is monotone on finite graphs. The situation where ϕ is preserved under extensions is

handled in a similar way. Let k = qr(ϕ) Similarly as in Chapter 2, Lynch showed that

from the perspective of FOg logic of quantifier rank k w.h.p. the only distinguishing

factor between random trials G0, G1 ∼ G(n, c/n) is their r-core, where r = (3k − 1)/2.

We show that whenever Core(G0)|r ⊆ Core(G1)|r then w.h.p. G0 ≤mo
k G1. This is

done by giving explicit graphs G′0, G
′
1 such that w.h.p. G′i ≡k Gi for i = 0, 1 and

G′0 ≤E G′1 (i.e., G′1 can be obtained from G′0 by adding edges). This shows that ϕ is

a.a.s. equivalent to Coren|r ∈ F , where Coren|r stands for the r-core of G(n, c/n) and F
is some upwards closed (with respect to subgraph inclusion) family of graphs. The last

piece of the proof is showing that F has a finite number of minimal elements H1, . . . ,H`.

In this situation, ϕ would be equivalent w.h.p. to the property “There exists a Hi-copy

for some 1 ≤ i ≤ `” which clearly can be expressed via an existential positive sentence.

In order to prove that F has a finite number of minimal elements, we use the fact that

the ≡k-type of G(n, c/n) is given by the ≡Ly
k -class of Coren|r (≡Ly

k is a relation given

in [50], similarly to Section 2.1), and show that each of those ≡Ly
k -classes has a unique

minimal element.

Before moving on to the proof of Theorem 4.7 we briefly introduce some facts about

G(n, c/n) given in [50]. The ideas mirror those of Chapter 2: W.h.p. G(n, c/n) is r-

simple and (k, r)-rich (in a sense analogous to Definition 2.6 and Definition 2.7), and

the ≡k-class of G(n, c/n) depends only on the class of its r-fragment (for r = (3k− 1)/2)

according to some equivalence relation ≡Ly
k analogous to those introduced in Section 2.1.

As an auxiliary result, we also show that each ≡Ly
k -class has a unique minimal element.

4.1.1 Minimum Trees

Definition 4.3 (Equivalence of trees, graph case). Given k ∈ N, we define the equiv-

alence relation (T0, x
0) ≡Ly

k (T1, x
1) between rooted trees of the same height by induc-

tion, as follows. If both T0, T1 have height 0, they consist simply of their roots and

(T0, x
0) ≡Ly

k (T1, x
1) holds. Now assume T0, T1 have height r > 0, and ≡Ly

k has been

defined for smaller values of r. Then (T0, x0) ≡Ly
k (T1, x

1) if for all ≡Ly
k -class C of trees

with height at most r − 1, the quantity

|{v ∈ V (Ti) | {xi, v} ∈ E(Ti), Ti(v;xi) ∈ C}|
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is the same for i = 0, 1, or is at least k in both cases. Here Ti(v;xi) denotes the

rooted sub-tree that “hangs” from v in (Ti, x
i), as in the word by word definition from

Section 2.1.1.

The following is just an easier version of Lemma 2.1. The same proof works.

Lemma 4.1. Let (T0, x
0), (T1, x

1) be rooted trees satisfying (T0, x
0) ≡Ly

k (T1, x
1). Then

(T0, x
0) ≡dFO

k (T1, x
1).

Definition 4.4 (Minimum trees). Given a ≡Ly
k class C of rooted trees, we define the

representative min(C) by induction on the height of C’s elements. If C is formed by

height zero trees, then min(C) is simply the isolated root xC . Otherwise, suppose that

C’s height is r > 0. Then, by definition of ≡Ly
k , there is a partition C−,C+ of all tree

≡Ly
k -classes of height at most r − 1, and numbers aCi ∈ N for each Ci ∈ C−, such that a

tree (T, x) belongs to C if and only if the quantity

|{v | x ∼ v, T (v;x) ∈ Ci}|

equals aCi for all Ci ∈ C−, and is at least k for all Ci ∈ C+. In this situation, we construct

min(C) by attaching aCi copies of min(Ci) to the root for each Ci ∈ C−, and k copies of

min(Ci) for each Ci ∈ C+.

Lemma 4.2. Suppose that C is the ≡Ly
k -class of (T, x). Then (T, x) is an extension of

min(C).

Proof. Let (TCi , x
Ci) = min(C). We proceed by induction on T ’s height. When T ’s

height is zero the result trivially holds. Otherwise, suppose T ’s height is r > 0 and

the statement is true for smaller values. Let v1, . . . , v` be all vC ’s children in (TC , x
C),

and let Ci be the ≡Ly
k -class of T C(vi), for all i = 1, . . . , `. By definition, of (TC , x

C) it

actually holds that T C(vi) is isomorphic to (TCi , x
Ci), for all i. By definition of (TC , x

C),

the number of children v ∼ x in (T, x) satisfying T (v;x) ∈ Ci for any fixed ≡Ly
k -class

is not greater than the number of children v ∼ xC in (TC , x
C) with the same property.

Thus, we can find different vertices u1, . . . , u`, each satisfying ui ∼ x in (T, x), and

T (ui;x) ≡Ly
k TC(vi;x

C). By the induction hypothesis, there are embeddings fi from

TC(vi;x
C) into T (ui;x) for all 1 ≤ i ≤ `. An embedding f from (TC , x

C) into (T, x) can

be defined by setting f(v) = x if v = xC , and f(v) = fi(v) if v belongs to the tree TC(vi).

This proves the statement.

4.1.2 Minimum Fragments

We define the relation ≡Ly
k between unicycles and fragments exactly in the same way as

in Chapter 2.
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Definition 4.5 (Minimum unicycles and fragments). Let C be a ≡Ly
k -class of unicycles,

and U be a representative of C, whose cycle is C. The minimum unicycle min(C)
is formed by taking a C-copy and attaching to each vertex v ∈ V (C) a copy of TCv ,

where Cv is the ≡Ly
k -class of T (U, v) (i.e., the tree that “hangs” out of v in the unicycle

U , as in Section 2.1.2). Similarly, let C be a ≡Ly
k -class of fragments. The minimum

fragment min(C) is formed by taking nC(Ci) copies of the unicycle min(Ci) for each

≡Ly
k -class of unicycles Ci, where nC(Ci) stands for the number of components in the class

Ci are contained in an arbitrary representative of C, or just k if this number exceeds k.

The following are easy consequences of Lemma 4.2 together with the definition of

≡Ly
k over unicycles and fragments.

Lemma 4.3. Let U be a unicycle and let C be its ≡Ly
k -class. Then min(C) can be

embedded into U .

Lemma 4.4. Let H be a fragment and let C be its ≡Ly
k -class. Then min(C) can be

embedded into H.

4.1.3 First Order Logic of Sparse Random Graphs

The we define the notions of r-simple and (k, r)-rich graph word by word as in Defini-

tion 2.6 and Definition 2.7, for relational structures. The following results are proven in

[50], and can be shown as in Chapter 2.

Lemma 4.5. Given r, k ∈ N and p(n) ∼ c/n, w.h.p. G(n, p) is r-simple and (k, r)-rich.

Lemma 4.6. Let k ∈ N, r = (3k − 1)/2. Let G0, G1 be r-simple (k, r)-rich graphs with

Core(G0)|r ≡Ly
k Core(G1)|r. Then G0 ≡k G1.

4.1.4 Proof of the Main Result

Proof of Theorem 4.7. Let k = qr(ϕ). Given a r-fragment H (i.e., a fragment where all

cycles have length at most 2r+1 and all the attached trees have height at most r), define

G[H] as the disjoint union of H and k copies of min(C), for each ≡Ly
k -class C of trees

whose height is at most r = (3k − 1)/2. Observe that by definition, Core(G[H])|r = H,

and G[H] is both r-simple and (k, r)-rich.

Given two ≡Ly
k -classes C1, C2 of fragments, we write C1 ≤ C2 if min(C2) is an extension

of min(C2). Observe that ≤ establishes a partial order over ≡Ly
k -classes of fragments.

Let C1 ≤ C2 be two ≡Ly
k -classes of r-fragments. We claim that G[min(C1)] |= ϕ implies

G[min(C2)] |= ϕ. We distinguish between the case where ϕ is preserved under extensions

and the one where ϕ is monotone. Suppose ϕ is preserved under extensions on finite

structures. Clearly, G[min(C1)], G[min(C2)] are both finite graphs and C1 ≤ C2 implies
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G[min(C2)] extends G[min(C1)], so the claim holds. Alternatively, suppose now that ϕ

is monotone on finite structures. Let s = |V (min(C2))| − |V (min(C1))|. Let G′ be the

graph resulting from adding s new isolated vertices to G[min(C1)]. It is easily seen that

G′ ≡k G[min(C2)]: both graphs are r-simple, (k, r)-rich, and share the same fragment.

Observe that the G[min(C2)] can be obtained from G′ by edge addition: using min(C1)

and the newly-added s isolated vertices one can reconstruct min(C2), and the remainder

of G′ is already isomorphic to G[min(C2)] \min(C2). Let Ω be the set of ≡Ly
k -classes of

r-fragments H satisfying G[H] |= ϕ (observe that by Lemma 4.6, if H1 ≡Ly
k H2 then

G[H1] ≡k G[H]).

The previous claim yields that Ω is downwards closed with respect to ≤. Let

C1, . . . , C` be the minimal elements in Ω (recall the number of ≡Ly
k -classes of r-fragments

is finite, so Ω is a finite set as well). Let ψ ∈ FOg be an existential positive sentence

stating that “G contains a copy of min(Ci) for some 1 ≤ i ≤ `”. Given an r-fragment

H, it is easy to see that its ≡Ly
k -class lies in Ω if and only if H extends min(Ci) for some

1 ≤ i ≤ `. Thus, G[H] |= φ↔ ψ for all r-fragments H. Let Coren|r stand for the r-core

of G(n, p). By definition of r-core, G(n, p) contains a copy of min(Ci) if and only if Coren|r
contains a copy of min(Ci). This means that G |= ψ is equivalent to G[Coren|r] |= ψ.

Additionally, by Lemma 4.5 and Lemma 4.6, G(n, p) w.h.p. G(n, p) ≡k G[Coren|r] holds.

Finally qr(ϕ) = k, so

lim
n→∞

Pr(G(n, p) |= φ↔ ψ) = lim
n→∞

Pr(G[Coren|r] |= φ↔ ψ).

However, the expression in last limit equals one, as stated above, showing the result.

4.2 Preservation Theorems on Very Sparse Graphs

In this section we briefly discuss the regime p ∼ cn−
t+1
t for some fixed integer t > 0. A

FO-convergence law can be established here using the same techniques as for p ∼ c/n

[50]. In fact, computations are simpler in this regime as w.h.p. all components are trees

of size at most t+1. We outline the arguments below. In order to do this we temporarily

redefine the notions of simple and rich graphs to fit the new edge density.

Definition 4.6. A graph G is simple if all its components are trees of size at most

t+ 1. We say that G is k-rich if, given any tree T of size at most t, there are at least k

components in G isomorphic to T .

Given a graph H, we denote by H
k

the graph resulting from removing all components

in H with more than k copies until every component appears at most k times. The

following is an straight-forward application of EF games.
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Theorem 4.8. Let G0, G1 be two graphs which are simple and k-rich. Additionally,

let Hi be the union of all components with size t + 1 in Gi for i = 0, 1. Suppose that

H0
k ' H1

k
. Then G0 ≡k G1.

Lemma 4.7. A.a.s. G(n, p) is simple. Additionally, for any fixed k a.a.s. G(n, p) is

k-rich.

Last two results together imply that the k-type of G(n, p) is a.a.s. determined by its

components of size t + 1 in this regime. Compare this with the regime p ∼ c/n, where

the k-type of G(n, p) was entirely dependent on its (3k − 1)/2-core.

The main result of this section is as follows.

Theorem 4.9. Let ϕ ∈ FOg be a sentence which is either monotone or preserved under

extensions on finite structures. Then there is an existential positive sentence ψ ∈ FOg

such that

lim
n→∞

Pr(G(n, p) |= ϕ↔ ψ) = 1,

for all probabilities p = p(n) satisfying p ∼ cn
−t−1
t for some c > 0. In particular, both

Lyndon’s and  Loś-Tarski Theorems hold a.a.s. in G(n, p).

An observation is that the  Loś-Tarski Theorem on G(n, p) in this range can be es-

tablished using the results from [8]. Indeed, among other results, they show that  Loś-

Tarski Theorem holds on the class of finite forests, and G(n, p) w.h.p. is a forest when

p(n) ∼ cn
−t−1
t . Nevertheless, we give an independent proof.

Proof. Proof of Theorem 4.9 The proof is analogous to the one for Theorem 4.7. We

describe the changes without going into detail. Let k = qr(ϕ). Given a graph H, we

define G[H] as the disjoint union of H with k copies of each tree with size at most t. It

can be seen that if H1 extends H0, then G[H0] |= ϕ implies G[H1] |= ϕ. Let F be the

set of minimal forests (w.r.t. the extension relation) satisfying G[Fi] |= ϕ, and whose

trees have all size t + 1. It is easy to check that F is actually finite: If F has more

than k copies of some component, then F extends F
k

without equality and F ≡k F
k

by

Theorem 4.8. Thus no element in F contains more than k copies of a component, and

so F is finite, as there is only a finite number of components to choose from (the trees

of size t + 1). Let ψ ∈ FOg be a sentence stating “G contains a copy of some forest in

F”. It is routine to check that

lim
n→∞

Pr(G(n, p) |= ϕ↔ ψ) = 1,

showing the result.
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4.3 Preservation Theorems at the Connectivity

Threshold

In this section we establish preservation theorems near to the connectivity threshold

of G(n, p), that is, when p(n) = Θ(lnn/n). Here we need to be more precise in our

description of p. We consider p(n) of the form ps,t,c+o(1/n), where ps,t,c = lnn+t ln lnn+c
sn ,

for some integers 1 ≤ s ≤ t + 1 and real c ∈ R. It was shown in [45] that probabilities

of this form are the only thresholds of FO properties in the range p = Θ(lnn/n). The

precise statement is that a FO zero-one law holds in G(n, p) whenever for all 1 ≤ s ≤ t+1,

the expression lnn+t ln lnn−snp(n) tends to either∞ or −∞. Moreover, it was proven

in [63] that a FO convergence law holds for all probabilities p = ps,t,c + o(1/n). We fix

s, t, c and p of this form for the rest of the section.

In this regime, the situation regarding preservation theorems turns out to be more

involved than in the previous ones. Our main results are the following

Theorem 4.10. Let p(n) = ps,t,c + o(1/n), and let ϕ ∈ FOg be a sentence preserved

under extensions on finite graphs. Then limn→∞ Pr(G(n, p) |= ϕ) is either zero or one.

Theorem 4.11. Let p(n) = ps,t,c + o(1/n), and let ϕ ∈ FOg be a monotone sentence on

finite graphs. Suppose s > 1. Then, limn→∞ Pr(G(n, p) |= ϕ) is either zero or one.

Theorem 4.12. Let p(n) = ps,t,c + o(1/n), and let ϕ ∈ FOg be a monotone sentence

on finite graphs. Suppose s = 1. Then, there is a positive sentence ψ ∈ FOg for which

limn→∞ Pr(G(n, p) |= ϕ↔ ψ) = 1.

4.3.1 The Landscape at the Connectivity Threshold

The landscape of G(n, p) in this range is as follows. Asymptotically, cycles of constant

size occur an unbounded number of times, and those small cycles lie far away from each

other. The degree of most vertices grows with n, and vertices of bounded degree are

rare. This is reflected in the fact that bounded-degree vertices can only be found far

away from cycles, and are grouped in “clusters” of size at most s (we clarify the terms

below). In the following we give a more precise description of G(n, p) before moving on

to the main results.

Given a graph G and k, r > 0, (k, r)-cluster (of low-degree vertices) is a maximal

set U ⊆ V (G) such that N(U, r) is connected, and where all vertices v ∈ U satisfy

deg(v) < k. For our purposes, the relevant features of a cluster U are the degrees of all

vertices v ∈ U , as well as the paths connecting U in N(U, r). We capture this information

through the following notion. A low-degree tree (T,U) is tree T , together with a set

of roots U ⊆ V (T ), where each leaf v ∈ V (T ) is either adjacent to a root u ∈ U , or is a
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root itself. The width of (T,U) is the minimum radius r for which all vertices v ∈ V (T )

satisfy d(U, v) ≤ r. We define LDTs(k, r) as the set of unlabeled low-degree trees (T,U)

with |U | = s, where all roots have degree smaller than k, and whose width is at most r,

and LDTt
s(k, r) ⊂ LDTs(k, r) as the subset containing those (T,U) with |E(T )| = t.

Observe that LDTs(k, r) contains only a finite number of low-degree trees (T,U).

Indeed, it is easy to see that T is the union of some paths P1, . . . , P` with both ends

in U and length at most 2r + 1, and some additional edges incident to U . The paths

P1, . . . , P` must form a tree, so ` = |U | − 1 = s− 1, and the total size of V (T ) is at most

(2r + k + 1)s.

Given a graph G, and k, r > 0, a low-degree tree (T ′, U ′) is the pattern of a (k, r)-

cluster U if N(U, r) is a tree, and (T ′, U ′) ' (T,U), where T is the smallest connected

subgraph of N(U, r) containing N(U, 1) (i.e., containing U and all edges incident to U).

Observe that, by definition, (T,U) belongs to LDTs(k, r), where s = |U |.

Theorem 4.13 ([63]). Let k ∈ N, r = (3k − 1)/2, The following properties hold in

G(n, p) w.h.p.:

(1) For all ` ≤ 2r + 1, there are at least k copies of each `-cycle.

(2) No two cycles of length at most 2r + 1 lie at distance smaller than 2r + 1 from

each other.

(3) For each ` ≤ (2r + 1)s, all vertices lying in `-cycles have degree at least k + 2.

Moreover the 2r + 1-neighbourhoods of all `-cycles contain no vertex of degree

smaller than k + 1.

(4) There are at least k vertices v1, . . . , vk at distance greater than 2r + 1 from each

other that satisfy deg(u) ≥ k + 2 for all u with d(vi, u) < r.

(5) For all s′ < s, all t′ > t and all (T,U) belonging to either LDTs′(r, k + 1) or

LDTt′
s (r, k + 1), the number of (k + 1, r)-clusters with pattern (T,U) is at least k.

(6) There are no (k + 1, r)-clusters of size greater than s.

(7) For all t′ < t and all (T,U) ∈ LDTt′
s (k+ 1, r), there are no (k+ 1, r)-clusters with

pattern (T,U).

4.3.2 Strategies at the Connectivity Threshold

In this subsection we show that w.h.p. the ≡k-class of G(n, p) is given by its set of small

(k + 1, r)-clusters. The following two auxiliary results can be easily shown using EF

games.

A rooted tree (T, x) is called perfectly height-balanced if all its leaves are at

the same distance from x. The minimum internal degree of (T, x) is the minimum

number of children of any of its non-leaf vertices.
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Lemma 4.8. Fix k, r > 0. Let (T0, x0), (T1, x1) be two perfectly height-balanced rooted

trees of height r whose minimum internal degrees exceed k. Then (T0, x0) ≡dFO
k (T1, x1).

Lemma 4.9. Let G be a graph and k > 0. For each v ∈ V (G) let (H0
v , xv), (H1

v , xv) be

two rooted graphs satisfying (H0
v , x) ≡dFO

k (H1
v , x). Then G0 ≡dFO

k G1 holds, where for

i = 0, 1 Gi stands for the result of attaching for each v ∈ V (G) the graph (H i
v, xv) to G

by identifying xv with v.

Lemma 4.10. Let G0, G1 be graphs, k > 0, r = (3k − 1)/2. The following facts hold:

• Let U0 ⊆ V (G0), U1 ⊆ V (G1) be (k + 1, r)-clusters with the same pattern (T,U).

Then N(U0, r) ≡dFO
k N(U1, r).

• Suppose both Suppose both G0, G1 satisfy properties (2), (3) from Theorem 4.13.

Let C0 ⊆ G0, C1 ⊆ G1 be cycles of the same length ` ≤ 2r+1. Then N(C0, r) ≡dFO
k

N(C1, r).

Proof. We begin with the first item. Let (T,U) be the pattern of both U0, U1. By

the definition of cluster, for both i = 0, 1, N(Ui, r) is formed by taking a copy of T

and attaching to each vertex v ∈ V (T ) a perfectly height-balanced tree Tv with height

h = r − d(v, U) and minimum internal degree at least k + 1. Thus, by Lemma 4.8 and

Lemma 4.9, N(U0, r) ≡dFO
k N(U1, r). The second item is shown similarly: Properties (2)

and (3) imply the neighbourhood N(Ci, r) consists of Ci plus a perfectly height-balanced

tree Tv attached to each vertex, whose height is r and minimum internal degree is at

least k + 1. By Lemma 4.8 and Lemma 4.9 again, N(C0, r) ≡ N(C1, r).

Theorem 4.14. Fix k > 0, r = (3k − 1)/2. Let G0, G1 be graphs satisfying properties

(1)-(8) from Theorem 4.13. Suppose that for all low-degree trees (T,U) ∈ LDTt
s(k+1, r)

the number of (k + 1, r)-clusters in Gi with pattern (T,U) is the same for i = 0, 1 or is

at least k in both cases. Then G0 ≡k G1.

Proof. For i = 0, 1, let Si ⊆ V (Gi) be the set of vertices that either lie on a cycle

of length at most 2r + 1, or whose degree is at most k. We apply Theorem 2.3 to

(G0, S0), (G1, S1). For this we need to show that both conditions of the Theorem are

satisfied. First, we see that N(S0, r) ≡dFO
k N(S1, r) holds. This follows by using the

previous lemma and the fact that G0, Gi have the same number (up to k) of `-cycles for

each ` ≤ 2r+1 and of (k+1, r)-clusters whose pattern is (T,U), for each low-degree tree

(T,U). To check the second condition of Theorem 2.3, observe that if v is a vertex in Gi

with d(Si, v) > 2`+ 1, for some ` ≤ r, then by properties (2) and (3) from Theorem 4.13

N(v, `) is a perfectly-height balanced tree of height ` and minimum internal degree at

least k + 1. Thus, by Lemma 4.8 the ≡dFO
k -class of N(v, `) is the same for all v with

d(Si, v) > 2` + 1. In addition to that, property (4) implies that there are at least k

vertices with that property in Gi lying at distance greater than 2r + 1 from each other.



94 Connectivity Threshold

This shows the second condition of Theorem 2.3 Finally, as (G0, S0), (G1, S1) fulfill both

conditions in Theorem 2.3, G0 ≡k G1, as we wanted to prove.

4.3.3 Proof of the Main Results

Given a graph G, the function χGk,r : LDTt
s(k, r)→ [k] maps each low-degree tree (T,U)

to the number of (k, r)-clusters in G with pattern (T,U), or to k if this number is larger.

Theorem 4.14, together with Theorem 4.13, show that a.a.s. the ≡k-type of G(n, p) is

determined by the function χ
G(n,p)
k+1,r .

In order to apply a similar proof technique to the one used for Theorem 4.7, our

next task is to build finite graphs that imitate the typical behaviour of G(n, p) from the

perspective of FO logic of fixed quantifier depth. This is achieved in the following two

definitions.

Definition 4.7. A graph G is (k, r)-homogeneous if its minimum degree is at least k,

it contains no `-cycles for each ` ≤ 2r + 1 (i.e., its girth is grater than 2r + 1), and its

r-independence number is at least k.

A simple way to convince oneself that (k, r)-homogeneous graphs exist for all (k, r)

is by noting that, asymptotically, a random k-regular graph has girth greater than 2r+1

with probability bounded away from zero.

Lemma 4.11. Fix k > 0, r = (3k − 1)/2. Let H0, H1 be two (k, r)-homogeneous graphs.

Then H0 ≡k H1.

For the rest of the section Hk,r denotes a fixed (k, r)-homogeneous graph, and xk,r ∈
V (Hk,r) is an arbitrary fixed vertex. Given a graph G, a set S ⊆ V (G) and a rooted

graph (H,x) we write G�k+1
S (H,x) for the result of performing the following operation

on each vertex u ∈ S: create k disjoint copies of (H,x) and join them to u through k

edges incident to their respective roots. For convenience we shorten G �k+1
V (G) (H,x) to

G�k+1 (H,x).

Definition 4.8. Let k > 0, r = (3k − 1)/2, and (H, x) = (Hk+1,r, xk+1,r). Consider a

map χ : LDTt
s(k + 1, r)→ [k]. The graph G[χ] is the disjoint union of the following:

• k copies of H.

• For each ` ≤ 2r + 1, k copies of C` �k+1 (H, x), where C` stands for the `-cycle.

• For all s′ < s, all t′ > t, and all (T,U) belonging to either LDTs′(k + 1, r) or

LDTt′
s (k + 1, r), k copies of T �k+1

S (H, x), where S = V (T ) \ U .

• for each (T,U) ∈ LDTt
s(k + 1, r), χ(T,U) copies of T �k+1

S (H, x), where S =

V (T ) \ U .
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We call the subgraph of G[χ] formed by the components in the first three items, the

almost sure part of G[χ]. The remaining part of the G[χ], formed by the components

described in the last item, is called its identifying part.

It is routine to check that the graph G[χ] satisfies properties (1)-(7) from Theo-

rem 4.13, independently of the map χ. This, Theorem 4.13 itself, and Theorem 4.14

imply the following corollary.

Corollary 4.1. A.a.s., G(n, p) ≡k G[χ
G(n,p)
k+1,r ].

Lemma 4.12. Fix k > 0, r = (3k − 1). Let χ0, χ1 : LDTt
s(k + 1, r) be two functions

satisfying χ0 ≤ χ1 (i.e., χ0(T,U) ≤ χ1(T,U) pointwise), and let ϕ ∈ FOg be a sentence

with qr(ϕ) = k that is either monotone on finite graphs, or preserved under extensions

on finite graphs. Then G[χ1] |= ϕ implies G[χ0] |= ϕ.

Proof. Let (H, x) = (Hk+1,r, xk+1), as in the definition of G[χ]. The main idea is that

the “excess” components of the form T �k+1
S (H, x) in G[χ1] can be made to look like

H by joining some extra copies of H to T . Indeed, given any tree T , the construction

T = T�k+1 (H, x) yields a (k+1, r)-homogeneous graph. Thus, by Lemma 4.11, T ≡k H.

One can obtain T from T �k+1
S (H, x) by joining the roots of k + 1 fresh copies of H to

v, for all vertices v ∈ V (T ) \ S. With this in mind, we proceed to the proof.

Let us begin with the case where ϕ is preserved under extensions on finite graphs.

We define the graph M as the union of (χ1(T,U)− χ0(T,U)) disjoint copies of T �k+1

(H, x) to the graph G[χ0], for each (T,U) ∈ LDTt
s(k + 1, r). Each component of M

is (k + 1, r)-homogeneous and G[χ0] already had k components with this property (the

ones isomorphic to H), so G[χ0] ≡k G′[χ0] ∪ M . We claim that G[χ0] ∪ M extends

G[χ1]. To see this, note the following: (i) The almost sure parts of G[χ0] and G[χ1] are

isomorphic. (ii) For each (T,U) ∈ LDTt
s(k + 1, r) the identifying part of G[χ1] contains

χ1(T,U) components of the form T �k+1
V (T )\U (H, x). Out of these, χ0(T,U) components

can be embedded into isomorphic components lying in the identifying part of G[χ0].

The remaining χ1(T,U) − χ0(T,U) components can be embedded into components of

the form T �k+1 (H, x) in M . Hence, if G[χ1] satisfies ϕ, so does G[χ0] ∪M by virtue

of the second graph being an extension of the first. The fact that G[χ0] ∪M ≡k G[χ0]

proves the statement from here.

Now suppose that ϕ is monotone on finite graphs. Let

` = (k + 1)s
∑

(T,U)∈LDTts(k+1,r)

(χ1(T,U)− χ0(T,U)) .

Define N as the union of ` disjoint copies of H. Clearly, G[χ1] ≡k G[χ1] ∪ N . We

claim that G[χ1]∪N ≤ G[χ0]∪M . Indeed, one can form G[χ0]∪M by adding edges to

G[χ1]∪N in the following way: for each (T,U) ∈ LDTt
s(k+1, r), take χ1(T,U)−χ0(T,U)
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copies of T �k+1
V (T )\U (H, x) lying in G[χ0] and connect each of them to (k + 1)|U | copies

of H in N to form copies of T �k+1 (H, x). Thus, if ϕ holds in G[χ1] ∪N , it must also

hold in G[χ0] ∪M . This, together with G[χ1] ∪ N ≡k G[χ1] and G[χ0] ∪M ≡k G[χ0],

proves the result.

Proof of Theorem 4.10. Last lemma showed that if ϕ ∈ FOg is a sentence closed under

extensions with qr(ϕ) = k > 0, and χ0 ≤ χ1 are two functions from LDTt
s(k + 1, r) into

[k], then G[χ1] |= ϕ implies G[χ0] |= ϕ. In addition to that, it is easily seen that the

other implication also holds. Indeed, by definition G[χ1] extends G[χ0], so G[χ0] |= ϕ

implies G[χ1] |= ϕ too. In particular, this shows that G[χ1] satisfies ϕ if and only if

G[χ] does so as well, where χ is the identically zero function. Hence, ϕ either holds in

all graphs of the form G[χ] or in none of them. By corollary 4.1, this implies the limit

limn→∞ Pr(G(n, p) |= ϕ) is either zero or one, as we wanted to prove.

Proof of Theorem 4.11. We proceed similarly to last proof. Let ϕ ∈ FOg be monotone on

finite graphs with qr(ϕ) = k > 0, and let χ0 ≤ χ1 be two functions from LDTt
s(k + 1, r)

into [k]. We claim that ϕ holds in G[χ0] if and only if it does in G[χ1]. The ‘if’

direction is given by Lemma 4.12. We prove the ‘only if’ direction now. Let ` =

|V (G[χ1])| − |V (G[χ0])|, and let G′0 be the result of adding ` isolated vertices to G[χ0].

As s > 0, G[χ0] already contains at least k isolated vertices, so G′0 ≡k G[χ0]. As shown

in the previous proof G[χ1] extends G[χ0], implying that G′0 ≤ G[χ1]. Thus G[χ0] |= ϕ

forces G[χ1] |= ϕ, as desired. Hence, as in the last proof, we get that ϕ either holds in

all graphs G[χ] or in none of them, so limn→∞ Pr(G(n, p) |= ϕ) equals zero or one, by

Corollary 4.1.

Proof of Theorem 4.12. Let ϕ ∈ FOg be monotone on finite graphs with qr(ϕ) = k > 0.

We assume k > t. Otherwise, as s = 1, LDTt
s(k+1, r) is empty and limn→∞ Pr(G(n, p) |=

ϕ) is either zero or one by Corollary 4.1, so the result holds. In the case where s = 1,

k > t the only low-degree (T,U) ∈ LDTt
s(k+1, r) is the one consisting of a root attached

to exactly t non-roots. In this situation, a map χ : LDTt
1(k + 1, r)→ [k] simply counts

(up to k) the number of degree-t vertices in G[χ]. Thus we can regard χ simply as a

number in [k]. By Lemma 4.12, G[χ] |= ϕ if and only if χ < ` for some `. Also, observe

that G[χ] has no vertices of degree lesser than t. This indicates that, on graphs of the

form G[χ], ϕ is equivalent to the statement P = “There are at most ` vertices of degree

not larger than t”. By Theorem 4.13, G(n, p) a.a.s. contains no vertex of degree lesser

than t, so a.a.s. P holds in G(n, p) if and only if it does so on G[χ
G(n,p)
k+1,r ]. This, together

with Corollary 4.1, yields that ϕ is a.a.s. equivalent to P on G(n, p). In order to prove

the theorem we just need to show that P can be expressed with a positive sentence.
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This is accomplished below.

ψ = ∀x1 . . . x` ∃y1 . . . yt+1

 ∨
1≤i<j≤`

xi = xj

 ∨
∨
i∈[`]

∧
j∈[t+1]

xi ∼ yj

 .

4.4 Preservation Theorems on Minor-Closed Classes

A graph H is a minor of another graph G if H can be obtained from G by deleting

vertices, deleting edges, and identifying adjacent vertices. A class of finite graphs C is

called minor-closed if whenever a graph G belongs to C then all its minors do so as

well. A celebrated result by Robertson and Seymour states that any minor-closed class

C can be characterized by a finite list of excluded minors H1, . . . ,H`, meaning that

G ∈ C if and only if Hi is not a minor of G for all 1 ≤ i ≤ ` [57]. A class of graphs C
is addable if (1) G ∈ C whenever all of G’s components belong to C as well, and (2)

H ∈ C whenever H results from adding an edge between two components of some graph

G ∈ C.
We fix an addable minor-closed class C of graphs for the rest of the section. The

random graph GCn is chosen uniformly at random among those in C containing exactly

n vertices. Observe that if C is non-empty, it always contains the graph consisting of n

isolated vertices, so GCn is well-defined. The random model GCn was extensively studied

in [53, 39]. Logical limit laws in this model were considered in [31], both for monadic

second-order logic and first-order logic. Among other results, they show that a FOg-

convergence law holds in GCn . Our main theorem this section is that the a.a.s. version of

 Loś-Tarski Theorem holds in GCn in the form of a zero-one law.

Theorem 4.15. Let ϕ ∈ FOg be a sentence which is preserved under extensions on

finite structures. Then Pr(GCn |= ϕ) converges to either zero or one.

In contrast to this result is the fact, proven in [8], that  Loś-Tarski Theorem does not

hold on minor-closed classes in general. More concretely, it does not hold on the class

of planar graphs which is both addable and minor-closed [69].

We define Bign as the largest component inside GCn , and Smalln as the union of all

other components. Theorem 4.15 can be proven exploiting a single fact about Bign’s

structure, stated below. Given connected graphs G,H, and a vertex v ∈ V (G), we say

that H contains a pendant copy of (G, v) if H contains a G-copy G′ that is connected

to the rest of H through a single edge incident to v′ ∈ V (G′), the vertex corresponding

to v.



98 Minor-Closed Classes

Lemma 4.13 ([53]). Let k ∈ N. Given a connected graph H ∈ C and a vertex v ∈ V (H),

w.h.p. Bign contains at least k pendant copies of (H, v).

Given rooted graphs (G, v), (H,u), we write (G, v) ≡k (H,u) if Duplicator wins the

variant of the game EFk+1(G,H) where the first moves on G and H are forced to be

v and u. Equivalently, we can interpret rooted graphs (G, v) as relational structures

with an adjacency predicate and a constant symbol, representing the root. Under this

interpretation the new definition of (G, v) ≡k (H,u) coincides with the usual notion of

logical equivalence. It follows that the number of ≡k-classes of rooted graphs is finite.

Next results show that the ≡k-class of Bign is determined w.h.p.

Lemma 4.14 ([31, Theorem 3.1] ). Fix k ∈ N. Let (H1, v1), . . . , (H`, v`) be representa-

tives of all ≡k-classes of rooted graphs (H, v), where H ranges over all connected graphs

in C. Let (Hk, ϑ) be the rooted graph where Hk ∈ C is the graph formed by attaching

a pendant copy of each (Hi, vi) to a central vertex ϑ. Let G ∈ C be a connected graph

containing a pendant copy of (Hk, ϑ). Then G ≡k Hk.

Putting together last two lemmas yields the following.

Corollary 4.2. Fix k ∈ N. Let Hk be as in last lemma. Then w.h.p. Bign ≡k Hk.

Now we are in conditions of proving this section’s main result.

Proof of Theorem 4.15. Let k = qr(ϕ), and let (Hk, ϑ) be as in Lemma 4.14. We show

that, if Hk |= ϕ, w.h.p. GCn |= ϕ, and GCn 6|= ϕ w.h.p. otherwise. We begin with the

‘if’ direction. By last corollary, w.h.p. GCn ≡k Smalln ∪ Hk. The graph Smalln ∪ Hk

is clearly and extension of Hk, so Hk |= ϕ implies that w.h.p. GCn |= ϕ. We prove the

converse now. Define the random graph Gn as the result of joining each component of

Smalln to a fresh single vertex through an arbitrary edge, and joining this fresh vertex

to ϑ, the central vertex of Hk. Observe that Gn contains a pendant copy of (Hk, ϑ), so

by Lemma 4.14, Gn ≡k Hk. Additionally, Gn is clearly an extension of Smalln ∪ Hk.

However, as stated before, w.h.p. GCn ≡k Smalln ∪ Hk. Hence, if Hk 6|= ϕ, then w.h.p.

GCn 6|= ϕ, as we wanted. This completes the proof.
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[39] Eryk Kopczyński and Anuj Dawar. “Logical Properties of Random Graphs

from Small Addable Classes”. In: Logical Methods in Computer Science Vol-

ume 15, Issue 3 (July 2019).

[40] Denis Kuperberg. “Positive First-order Logic on Words and Graphs”. In:

arXiv:2201.11619 (Feb. 2022).

[41] Alberto Larrauri. “Probabilities of First-Order Sentences on Sparse Ran-

dom Relational Structures: An Application to Definability on Random CNF

Formulas”. In: Journal of Logic and Computation 31.2 (Mar. 2021).

[42] Alberto Larrauri, Tobias Müller, and Marc Noy. “Limiting Probabilities of

First Order Properties of Random Sparse Graphs and Hypergraphs”. In:

Random Structures & Algorithms 60.3 (May 2022).

[43] Jean-Marie Le Bars. “The 0–1 Law Fails for Monadic Existential Second-

Order Logic on Undirected Graphs”. In: Information Processing Letters 77.1

(Jan. 2001).

[44] Leonid Libkin. Elements of Finite Model Theory. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2004.

[45] Tomasz Luczak and Joel Spencer. “When Does the Zero-One Law Hold?”

In: Journal of the American Mathematical Society (1991).

[46] J.F. Lynch. “Convergence Law for Random Graphs with Specified Degree

Sequence”. In: 18th Annual IEEE Symposium of Logic in Computer Science,

2003. Proceedings. June 2003.



BIBLIOGRAPHY 103

[47] James F Lynch. “Convergence Law for Random Graphs With Specified De-

gree Sequence”. In: ACM Transactions on Computational Logic 6.4 (2005).

[48] James F Lynch. “Convergence Laws for Random Words”. In: Australasian

Journal of Combinatorics (1993).

[49] James F. Lynch. “Probabilities of First-Order Sentences about Unary Func-

tions”. In: Transactions of the American Mathematical Society 287.2 (1985).

[50] James F. Lynch. “Probabilities of Sentences about Very Sparse Random

Graphs”. In: Random Structures & Algorithms 3.1 (1992).

[51] Roger C. Lyndon. “Properties Preserved under Homomorphism.” In: Pacific

Journal of Mathematics 9.1 (Jan. 1959).

[52] Gregory L. McColm. “First Order Zero–One Laws for Random Graphs on

the Circle”. In: Random Structures & Algorithms 14.3 (1999).

[53] Colin McDiarmid. “Random Graphs from a Minor-Closed Class”. In: Com-

binatorics, Probability and Computing 18.4 (July 2009).

[54] Michael Molloy and Bruce Reed. “A Critical Point for Random Graphs with

a given Degree Sequence”. In: Random Structures & Algorithms 6.2-3 (Mar.

1995).
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